advanced-calculus-calculate-I-0-pi-x-1-sin-x-cos-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 123023 by mnjuly1970 last updated on 21/Nov/20 …advancedcalculus…calculate:::I:=???∫0πx1−sin(x)cos(x)dx………………………….. Answered by mnjuly1970 last updated on 24/Nov/20 evaluation:I=?∫0πx1−sin(x)cos(x)dxsolution:I=[∫0π2x1−sin(x)cos(x)dx=I1]+[∫π2πx1−xsin(x)cos(x)dx=I2]I1=∫0π22x2−sin(2x)dx=π∫0π212−sin(2x)dx−2∫0π2x2−sin(2x)dx2I1=π∫0π2dx2−2tan(x)1+tan2(x)=π∫0π21+tan2(x)2tan2(x)−2tan(x)+2dxMissing \left or extra \rightMissing \left or extra \right=π3[π2+π6]=2π233⇒I1=π233✓I2=∫π2πx1−sin(x)cos(x)dx=3π2∫π2π22−sin(2x)dx−I22I2=similarlyI1(3π2(23)[tan−1(23(t−12)]−∞02I2=3π3[−π6+π2]=3π233⇒I2=π223∴I=I1+I2=π23(12+13)=5π263✓✓r Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: advanced-calculus-calculate-0-pi-pi-1-sin-x-cos-x-dx-Next Next post: calculate-lim-x-1-x-x-2-arctan-t-sint-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.