Menu Close

advanced-calculus-calculate-I-0-pi-x-1-sin-x-cos-x-dx-




Question Number 123023 by mnjuly1970 last updated on 21/Nov/20
          ... advanced  calculus...  calculate:::       I:=^(???)  ∫_0 ^( π) (x/(1−sin(x)cos(x)))dx                 ................................
advancedcalculuscalculate:::I:=???0πx1sin(x)cos(x)dx..
Answered by mnjuly1970 last updated on 24/Nov/20
                 evaluation:  I=^? ∫_0 ^( π) (x/(1−sin(x)cos(x)))dx     solution:          I=[∫_0 ^(π/2) (x/(1−sin(x)cos(x)))dx=I_1 ]+[∫_((π/2) ) ^( π) (x/(1−xsin(x)cos(x)))dx=I_2 ]         I_1 =∫_0 ^(π/2) ((2x)/(2−sin(2x)))dx=π∫_0 ^(π/2) (1/(2−sin(2x)))dx−2∫_0 ^(π/2) (x/(2−sin(2x)))dx       2I_1 =π∫_0 ^( (π/2)) (dx/(2−((2tan(x))/(1+tan^2 (x)))))=π∫_0 ^(π/2) ((1+tan^2 (x))/(2tan^2 (x)−2tan(x)+2))dx    =^(tan(x)=y) (π/2)∫_0 ^∞ (dy/(y^2 −y+1))=(π/2) (2/( (√3)))[tan^(−1) ((2/( (√3)))(y−(1/2)))]_0 ^∞         =(π/( (√3)))[(π/2)+(π/6)]=((2π^2 )/( 3(√3))) ⇒ I_1 =(π^2 /(3(√3))) ✓        I_2 =∫_(π/2) ^( π) (x/(1−sin(x)cos(x)))dx       =((3π)/2)∫_(π/2) ^( π) (2/(2−sin(2x)))dx−I_2          2I_2 =_I_1  ^(similarly) (((3π)/2)( (2/( (√3))))[tan^(−1) ((2/( (√3)))(t−(1/2))]_(−∞) ^0        2I_2 =((3π)/( (√3)))[((−π)/6)+(π/2)]=((3π^2 )/(3(√3))) ⇒ I_2 =(π^2 /( 2(√3)))       ∴ I=I_1 +I_2 =(π^2 /( (√3)))((1/2)+(1/3))=((5π^2 )/(6(√3)))  ✓✓                           r
evaluation:I=?0πx1sin(x)cos(x)dxsolution:I=[0π2x1sin(x)cos(x)dx=I1]+[π2πx1xsin(x)cos(x)dx=I2]I1=0π22x2sin(2x)dx=π0π212sin(2x)dx20π2x2sin(2x)dx2I1=π0π2dx22tan(x)1+tan2(x)=π0π21+tan2(x)2tan2(x)2tan(x)+2dxMissing \left or extra \right=π3[π2+π6]=2π233I1=π233I2=π2πx1sin(x)cos(x)dx=3π2π2π22sin(2x)dxI22I2=similarlyI1(3π2(23)[tan1(23(t12)]02I2=3π3[π6+π2]=3π233I2=π223I=I1+I2=π23(12+13)=5π263r

Leave a Reply

Your email address will not be published. Required fields are marked *