Menu Close

Advanced-Calculus-Calculate-i-I-0-1-ln-x-ln-1-x-dx-ii-J-0-1-Li-2-1-x-2-Note-Li-2-x-




Question Number 147287 by mnjuly1970 last updated on 19/Jul/21
               ...Advanced  Calculus...          Calculate ::     { ((  i ::      I := ∫_0 ^( 1) ln(x).ln(1+x) dx)),((  ii ::     J := ∫_0 ^( 1) Li_( 2) ( 1− x^( 2) ) =?)) :}            Note::   Li_2  (x) = Σ_(n=1) ^( ∞)  (x^( n) /n^( 2) )    ........ ■                                                           .... m.n....
AdvancedCalculusCalculate::{i::I:=01ln(x).ln(1+x)dxii::J:=01Li2(1x2)=?Note::Li2(x)=n=1xnn2..◼.m.n.
Answered by mindispower last updated on 19/Jul/21
I=[(xln(x)−x)ln(1+x)]_0 ^1 −∫_0 ^1 ((xln(x))/(1+x))−(x/(1+x))dx  =−ln(2)−∫_0 ^1 (((x+1−1)ln(x))/(1+x))−1+(1/(1+x))dx  =−ln(2)−∫_0 ^1 ln(x)dx+∫_0 ^1 ((ln(x))/(1+x))dx+∫dx−∫(dx/(1+x))  =−ln(2)+1−∫_0 ^1 ((ln(1+x))/x)dx+1−ln(2)  =−ln(2)−∫_0 ^1 ((ln(1−(−x)))/(−x))d(−x)+2  =ln(2)+[Li_2 (−x)]_0 ^1 =−2ln(2)+Li_2 (−1)+2=−ln(4)−(π^2 /(12))+2  J=[xli_2 (1−x^2 )]−∫_0 ^1 ((2x^2 ln(x^2 ))/(1−x^2 ))  =−4∫_0 ^1 ((ln(x))/(1−x^2 ))dx+4∫_0 ^1 ln(x)dx  =−2∫_0 ^1 ((ln(x))/(1−x))dx−2∫_0 ^1 ((ln(x))/(1+x))dx−4  =2Li_2 (1−x)]_0 ^1 +2∫_0 ^1 ((ln(1+x))/x)dx−4  =(π^2 /3)−2Li(−1)−4  =(π^2 /3)+(π^2 /6)−4=(π^2 /2)−4=(1/2)(π^2 −8)
I=[(xln(x)x)ln(1+x)]0101xln(x)1+xx1+xdx=ln(2)01(x+11)ln(x)1+x1+11+xdx=ln(2)01ln(x)dx+01ln(x)1+xdx+dxdx1+x=ln(2)+101ln(1+x)xdx+1ln(2)=ln(2)01ln(1(x))xd(x)+2=ln(2)+[Li2(x)]01=2ln(2)+Li2(1)+2=ln(4)π212+2J=[xli2(1x2)]012x2ln(x2)1x2=401ln(x)1x2dx+401ln(x)dx=201ln(x)1xdx201ln(x)1+xdx4=2Li2(1x)]01+201ln(1+x)xdx4=π232Li(1)4=π23+π264=π224=12(π28)
Answered by mathmax by abdo last updated on 19/Jul/21
Υ=∫_0 ^1 ln(x)ln(1+x)dx  we have (d/dx)ln(1+x)=(1/(1+x))=Σ_(n=0) ^∞ (−1)^n x^n   ⇒ln(1+x)=Σ_(n=0) ^∞  (((−1)^n x^(n+1) )/(n+1))=Σ_(n=1) ^∞  (((−1)^(n−1) x^n )/n)  ⇒Υ=∫_0 ^1 (Σ_(n=1) ^∞  (((−1)^(n−1) x^n )/n))ln(x)dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)∫_0 ^1  x^n ln(x)dx  U_n =∫_0 ^1  x^n ln(x)dx=[(x^(n+1) /(n+1))ln(x)]_0 ^1 −∫_0 ^1 (x^n /(n+1))dx  =−(1/((n+1)^2 )) ⇒Υ=−Σ_(n=1) ^∞  (((−1)^(n−1) )/(n(n+1)^2 ))=Σ_(n=1) ^∞  (((−1)^n )/(n(n+1)^2 ))  (1/(x(x+1)^2 ))=(a/x)+(b/(x+1))+(c/((x+1)^2 ))=h(x)  a=1 ,c=−1   ,lim_(x→+∞) xh(x)=0=a+b ⇒b=−1 ⇒  h(x)=(1/x)−(1/(x+1))−(1/((x+1)^2 )) ⇒Υ=Σ_(n.1) ^∞  (((−1)^n )/n)−Σ_(n=1) ^∞  (((−1)^n )/(n+1))  −Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 ))  we have  Σ_(n=1) ^∞  (((−1)^n )/n)=−ln2  Σ_(n=1) ^∞  (((−1)^n )/(n+1))=Σ_(n=2) ^∞  (((−1)^(n−1) )/n)=ln(2)−1  Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 ))=Σ_(n=2) ^∞  (((−1)^(n−1) )/n^2 )=−Σ_(n=2) ^∞  (((−1)^n )/n^2 )  =−(Σ_(n=1) ^∞  (((−1)^n )/n^2 )+1)=−(2^(1−2) −1)ξ(2)−1=(1/2)(π^2 /6)−1=(π^2 /(12))−1  ⇒Υ=−ln2−ln2+1−(π^2 /(12))+1 =2−2ln2−(π^2 /(12))
Υ=01ln(x)ln(1+x)dxwehaveddxln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1=n=1(1)n1xnnΥ=01(n=1(1)n1xnn)ln(x)dx=n=1(1)n1n01xnln(x)dxUn=01xnln(x)dx=[xn+1n+1ln(x)]0101xnn+1dx=1(n+1)2Υ=n=1(1)n1n(n+1)2=n=1(1)nn(n+1)21x(x+1)2=ax+bx+1+c(x+1)2=h(x)a=1,c=1,limx+xh(x)=0=a+bb=1h(x)=1x1x+11(x+1)2Υ=n.1(1)nnn=1(1)nn+1n=1(1)n(n+1)2wehaven=1(1)nn=ln2n=1(1)nn+1=n=2(1)n1n=ln(2)1n=1(1)n(n+1)2=n=2(1)n1n2=n=2(1)nn2=(n=1(1)nn2+1)=(2121)ξ(2)1=12π261=π2121Υ=ln2ln2+1π212+1=22ln2π212

Leave a Reply

Your email address will not be published. Required fields are marked *