Question Number 120775 by mnjuly1970 last updated on 02/Nov/20

Answered by Dwaipayan Shikari last updated on 02/Nov/20
![∫tan^(−1) x dx =xtan^(−1) x−∫(x/(1+x^2 )) =xtan^(−1) x−log((√(1+x^2 ))) (logx∫_0 ^1 tan^(−1) (x)dx=0) Φ=[log(x)∫_0 ^1 tan^(−1) x]−∫_0 ^1 tan^(−1) x+(1/2)∫_0 ^1 ((log(1+x^2 ))/x) Φ=−[xtan^(−1) x−log((√(1+x^2 )))]+(1/2)∫_0 ^1 Σ_(n=1) ^∞ (−1)^(n+1) x^(2n−1) .(1/n) Φ=−(π/4)+(1/2)log(2)+(1/2)Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^1 x^(2n−1) .(1/n)dx Φ=−(π/4)+(1/2)log(2)+(1/2)Σ_(n=1) ^∞ (−1)^(n+1) (1/(2n^2 )) Φ=−(π/4)+(1/2)log(2)+(π^2 /(48))](https://www.tinkutara.com/question/Q120786.png)
Commented by mnjuly1970 last updated on 02/Nov/20

Commented by Dwaipayan Shikari last updated on 03/Nov/20

Answered by mindispower last updated on 02/Nov/20
![=[(xln(x)−x)tan^− (x)]_0 ^1 −∫_0 ^1 ((xln(x)−x)/(1+x^2 ))dx =−tan^− (1)+∫_0 ^1 (x/(1+x^2 ))dx−∫_0 ^1 (x/(1+x^2 ))ln(x)dx −(π/4)+((ln(2))/2)−Σ_(k≥0) ∫_0 ^1 (−1)^k x^(2k+1) ln(x)dx =−(π/4)+((ln(2))/2)−Σ_(k≥0) (−1)^k (−(1/((2k+2)^2 ))) =−(π/4)+((ln(2))/2)+(1/4)Σ_(k≥0) (((−1)^k )/((k+1)^2 )) =−(π/4)+((ln(2))/2)+(1/4)[(π^2 /(12))] =((−12π+π^2 +24ln(2))/(48))](https://www.tinkutara.com/question/Q120793.png)
Commented by mnjuly1970 last updated on 02/Nov/20

Commented by mindispower last updated on 03/Nov/20
