Menu Close

advanced-calculus-evaluate-0-1-ln-x-tan-1-x-dx-m-n-1970-




Question Number 120775 by mnjuly1970 last updated on 02/Nov/20
              ...advanced  calculus...      evaluate ::                        Φ=^(???) ∫_0 ^( 1) ln(x)tan^(−1) (x)dx           ...m.n.1970...
advancedcalculusevaluate::Φ=???01ln(x)tan1(x)dxm.n.1970
Answered by Dwaipayan Shikari last updated on 02/Nov/20
∫tan^(−1) x dx  =xtan^(−1) x−∫(x/(1+x^2 ))  =xtan^(−1) x−log((√(1+x^2 )))      (logx∫_0 ^1 tan^(−1) (x)dx=0)  Φ=[log(x)∫_0 ^1 tan^(−1) x]−∫_0 ^1 tan^(−1) x+(1/2)∫_0 ^1 ((log(1+x^2 ))/x)  Φ=−[xtan^(−1) x−log((√(1+x^2 )))]+(1/2)∫_0 ^1 Σ_(n=1) ^∞ (−1)^(n+1) x^(2n−1) .(1/n)  Φ=−(π/4)+(1/2)log(2)+(1/2)Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^1 x^(2n−1) .(1/n)dx  Φ=−(π/4)+(1/2)log(2)+(1/2)Σ_(n=1) ^∞ (−1)^(n+1) (1/(2n^2 ))  Φ=−(π/4)+(1/2)log(2)+(π^2 /(48))
tan1xdx=xtan1xx1+x2=xtan1xlog(1+x2)(logx01tan1(x)dx=0)Φ=[log(x)01tan1x]01tan1x+1201log(1+x2)xΦ=[xtan1xlog(1+x2)]+1201n=1(1)n+1x2n1.1nΦ=π4+12log(2)+12n=1(1)n+101x2n1.1ndxΦ=π4+12log(2)+12n=1(1)n+112n2Φ=π4+12log(2)+π248
Commented by mnjuly1970 last updated on 02/Nov/20
thank you so much mr dwaipayanexcellent
thankyousomuchmrdwaipayanexcellent
Commented by Dwaipayan Shikari last updated on 03/Nov/20
With pleasure
Withpleasure
Answered by mindispower last updated on 02/Nov/20
=[(xln(x)−x)tan^− (x)]_0 ^1 −∫_0 ^1 ((xln(x)−x)/(1+x^2 ))dx  =−tan^− (1)+∫_0 ^1 (x/(1+x^2 ))dx−∫_0 ^1 (x/(1+x^2 ))ln(x)dx  −(π/4)+((ln(2))/2)−Σ_(k≥0) ∫_0 ^1 (−1)^k x^(2k+1) ln(x)dx  =−(π/4)+((ln(2))/2)−Σ_(k≥0) (−1)^k (−(1/((2k+2)^2 )))  =−(π/4)+((ln(2))/2)+(1/4)Σ_(k≥0) (((−1)^k )/((k+1)^2 ))  =−(π/4)+((ln(2))/2)+(1/4)[(π^2 /(12))]  =((−12π+π^2 +24ln(2))/(48))
=[(xln(x)x)tan(x)]0101xln(x)x1+x2dx=tan(1)+01x1+x2dx01x1+x2ln(x)dxπ4+ln(2)2k001(1)kx2k+1ln(x)dx=π4+ln(2)2k0(1)k(1(2k+2)2)=π4+ln(2)2+14k0(1)k(k+1)2=π4+ln(2)2+14[π212]=12π+π2+24ln(2)48
Commented by mnjuly1970 last updated on 02/Nov/20
very nice sir mindspower  grateful..
verynicesirmindspowergrateful..
Commented by mindispower last updated on 03/Nov/20
thanx withe pleasur nice day sir
thanxwithepleasurnicedaysir

Leave a Reply

Your email address will not be published. Required fields are marked *