Question Number 125668 by mnjuly1970 last updated on 12/Dec/20
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{calculus}… \\ $$$$\:\:\:\:\:{evaluate}::: \\ $$$$\:\:\:\:\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left({ln}\left({cot}\left({x}\right)\right)\right){dx}=? \\ $$$$ \\ $$
Answered by mindispower last updated on 13/Dec/20
$$\Phi=\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({ln}\left({x}\right)\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({t}\right)}{\mathrm{1}+{e}^{\mathrm{2}{t}} }{e}^{{t}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({t}\right){e}^{−{t}} }{\mathrm{1}+{e}^{−\mathrm{2}{t}} }{dt} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{k}} {ln}\left({t}\right){e}^{−\left(\mathrm{1}+\mathrm{2}{k}\right){t}} \\ $$$${ln}\left({t}\right)=\partial_{{s}} {t}^{{s}} \mid{s}=\mathrm{0} \\ $$$${g}\left({s}\right)=\underset{{k}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{k}} {t}^{{s}} {e}^{−\left(\mathrm{1}+\mathrm{2}{k}\right){t}} {dt} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{k}} \frac{{y}^{{s}} {e}^{−{y}} {dy}}{\left(\mathrm{1}+\mathrm{2}{k}\right)^{{s}+\mathrm{1}} } \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\left(\mathrm{1}+\mathrm{2}{k}\right)^{{s}+\mathrm{1}} }\int_{\mathrm{0}} ^{\infty} {y}^{{s}} {e}^{−{y}} {dy} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\left(\mathrm{1}+\mathrm{2}{k}\right)^{{s}+\mathrm{1}} }\Gamma\left({s}+\mathrm{1}\right) \\ $$$$=\Gamma\left({s}+\mathrm{1}\right)\underset{{k}\geqslant\mathrm{0}} {\sum}\left(\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{4}{k}\right)^{{s}+\mathrm{1}} }−\frac{\mathrm{1}}{\left(\mathrm{3}+\mathrm{4}{k}\right)^{{s}+\mathrm{1}} }\right) \\ $$$$=\frac{\Gamma\left({s}+\mathrm{1}\right)}{\mathrm{4}^{{s}+\mathrm{1}} }\left(\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left({k}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{{s}+\mathrm{1}} }−\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left({k}+\frac{\mathrm{3}}{\mathrm{4}}\right)^{{s}+\mathrm{1}} }\right) \\ $$$$=\frac{\Gamma\left({s}+\mathrm{1}\right)}{\mathrm{4}^{{s}+\mathrm{1}} }\left(\zeta\left({s}+\mathrm{1},\frac{\mathrm{1}}{\mathrm{4}}\right)−\zeta\left({s}+\mathrm{1},\frac{\mathrm{3}}{\mathrm{4}}\right)\right. \\ $$$$\zeta\left({s},{q}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left({n}+{q}\right)^{{s}} },{Zets}\:{hrwitz}\:{function} \\ $$$${we}\:{want}\:{g}'\left(\mathrm{0}\right) \\ $$$$\frac{\Gamma'\left({s}+\mathrm{1}\right)\mathrm{4}^{{s}+\mathrm{1}} −\mathrm{4}^{{s}+\mathrm{1}} {ln}\left(\mathrm{4}\right)\Gamma\left({s}+\mathrm{1}\right)}{\mathrm{4}^{\mathrm{2}{s}+\mathrm{2}} }\mid_{{s}=\mathrm{0}} .\underset{{s}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\zeta\left({s}+\mathrm{1},\frac{\mathrm{1}}{\mathrm{4}}\right)−\zeta\left({s}+\mathrm{1},\frac{\mathrm{3}}{\mathrm{4}}\right)\right) \\ $$$$+\underset{{s}\rightarrow\mathrm{0}} {\mathrm{lim}}\partial_{{s}} \left(\zeta\left({s}+\mathrm{1},\frac{\mathrm{1}}{\mathrm{4}}\right)−\zeta\left({s}+\mathrm{1},\frac{\mathrm{3}}{\mathrm{4}}\right)\right).\frac{\Gamma\left({s}+\mathrm{1}\right)}{\mathrm{4}^{{s}+\mathrm{1}} } \\ $$$$\zeta\left({s}+\mathrm{1},{q}\right)=\frac{\mathrm{1}}{{s}}+\Sigma\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\gamma_{{n}} \left({q}\right){s}^{{n}} ,{laurent}\:{serie} \\ $$$${expansion}\:\gamma_{{n}} \left({q}\right)\:{Stieltjes}\:{constante} \\ $$$$\zeta\left({s}+\mathrm{1},\frac{\mathrm{1}}{\mathrm{4}}\right)−\zeta\left({s}+\mathrm{1},\frac{\mathrm{3}}{\mathrm{4}}\right)={h}\left({s}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\left(\gamma_{{n}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)−\gamma_{{n}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right){s}^{{n}} \\ $$$$\underset{{s}\rightarrow\mathrm{0}} {\mathrm{lim}}{h}\left({s}\right)=\gamma_{\mathrm{0}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)−\gamma_{\mathrm{0}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$\partial_{{s}} {h}\left({s}\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}−\mathrm{1}\right)!}\left(\gamma_{{n}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)−\gamma_{{n}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right){s}^{{n}−\mathrm{1}} \right. \\ $$$$\underset{{s}\rightarrow\mathrm{0}} {\mathrm{lim}}{h}'\left({s}\right)=\gamma_{\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\gamma_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\gamma_{\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\gamma_{\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}}\right)=\mathrm{2}\pi\underset{{l}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}{sin}\left(\frac{\mathrm{6}\pi{l}}{\mathrm{4}}\right){ln}\Gamma\left(\frac{{l}}{\mathrm{4}}\right)−\pi\left(\gamma+{ln}\left(\mathrm{8}\pi\right)\right){cot}\left(\frac{\mathrm{3}\pi}{\mathrm{4}}\right) \\ $$$$=−\mathrm{2}\pi\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)+\mathrm{2}\pi\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)+\pi\left(\gamma+{ln}\left(\mathrm{8}\pi\right)\right) \\ $$$$=\mathrm{2}\pi\left(\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right)+\pi\left(\gamma+{ln}\left(\mathrm{8}\pi\right)\right) \\ $$$$\gamma_{\mathrm{0}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)−\gamma_{\mathrm{0}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)=\Psi\left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\Psi\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=−\pi{cot}\left(\frac{\mathrm{3}\pi}{\mathrm{4}}\right) \\ $$$$=\pi \\ $$$${g}'\left(\mathrm{0}\right)=\frac{\mathrm{4}\Gamma'\left(\mathrm{1}\right)−\mathrm{4}{ln}\left(\mathrm{4}\right)\Gamma\left(\mathrm{1}\right)}{\mathrm{4}^{\mathrm{2}} }\pi+\left(\mathrm{2}\pi\left(\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right)+\pi\left(\gamma+{ln}\left(\mathrm{8}\pi\right)\right).\frac{\mathrm{1}}{\mathrm{4}}\right. \\ $$$$ \\ $$$$ \\ $$$$=−\frac{\gamma}{\mathrm{4}}\pi−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\pi+\frac{\pi}{\mathrm{2}}\left(\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right)+\frac{\gamma\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{8}\pi\right) \\ $$$$=\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\pi\right)+\frac{\pi}{\mathrm{2}}\left(\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right) \\ $$
Commented by mindispower last updated on 13/Dec/20
$${we}\:{can}\: \\ $$$${use}\:\Gamma\left({z}\right)\Gamma\left({z}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}^{\mathrm{1}−\mathrm{2}{z}} \sqrt{\pi}\Gamma\left(\mathrm{2}{z}\right) \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right).\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)=\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \sqrt{\pi}.\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\pi\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)=\pi\sqrt{\mathrm{2}}.\frac{\mathrm{1}}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}…{to}\:{express}\:{using} \\ $$$${just}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 13/Dec/20
$${thanks}\:{alot}\: \\ $$$${mr}\:{power}…… \\ $$
Commented by mindispower last updated on 13/Dec/20
$${withe}\:{pleasur}\: \\ $$