Menu Close

advanced-calculus-evaluate-0-pi-4-ln-ln-cot-x-dx-




Question Number 125668 by mnjuly1970 last updated on 12/Dec/20
                ... advanced  calculus...       evaluate:::           Φ=∫_0 ^( (π/4)) ln(ln(cot(x)))dx=?
advancedcalculusevaluate:::Φ=0π4ln(ln(cot(x)))dx=?
Answered by mindispower last updated on 13/Dec/20
Φ=∫_1 ^∞ ((ln(ln(x)))/(1+x^2 ))dx=∫_0 ^∞ ((ln(t))/(1+e^(2t) ))e^t dt  =∫_0 ^∞ ((ln(t)e^(−t) )/(1+e^(−2t) ))dt  =Σ_(k≥0) ∫_0 ^∞ (−1)^k ln(t)e^(−(1+2k)t)   ln(t)=∂_s t^s ∣s=0  g(s)=Σ_(k≥0) ∫_0 ^∞ (−1)^k t^s e^(−(1+2k)t) dt  =Σ_(k≥0) ∫_0 ^∞ (−1)^k ((y^s e^(−y) dy)/((1+2k)^(s+1) ))  =Σ_(k≥0) (((−1)^k )/((1+2k)^(s+1) ))∫_0 ^∞ y^s e^(−y) dy  =Σ_(k≥0) (((−1)^k )/((1+2k)^(s+1) ))Γ(s+1)  =Γ(s+1)Σ_(k≥0) ((1/((1+4k)^(s+1) ))−(1/((3+4k)^(s+1) )))  =((Γ(s+1))/4^(s+1) )(Σ_(k≥0) (1/((k+(1/4))^(s+1) ))−Σ_(k≥0) (1/((k+(3/4))^(s+1) )))  =((Γ(s+1))/4^(s+1) )(ζ(s+1,(1/4))−ζ(s+1,(3/4))  ζ(s,q)=Σ_(n≥0) (1/((n+q)^s )),Zets hrwitz function  we want g′(0)  ((Γ′(s+1)4^(s+1) −4^(s+1) ln(4)Γ(s+1))/4^(2s+2) )∣_(s=0) .lim_(s→0) (ζ(s+1,(1/4))−ζ(s+1,(3/4)))  +lim_(s→0) ∂_s (ζ(s+1,(1/4))−ζ(s+1,(3/4))).((Γ(s+1))/4^(s+1) )  ζ(s+1,q)=(1/s)+Σ(((−1)^n )/(n!))γ_n (q)s^n ,laurent serie  expansion γ_n (q) Stieltjes constante  ζ(s+1,(1/4))−ζ(s+1,(3/4))=h(s)=Σ_(n≥0) (((−1)^n )/(n!))(γ_n ((1/4))−γ_n ((3/4)))s^n   lim_(s→0) h(s)=γ_0 ((1/4))−γ_0 ((3/4))  ∂_s h(s)=Σ_(n≥1) (((−1)^n )/((n−1)!))(γ_n ((1/4))−γ_n ((3/4))s^(n−1)   lim_(s→0) h′(s)=γ_1 ((3/4))−γ_1 ((1/4))  γ_1 ((3/4))−γ_1 (1−(3/4))=2πΣ_(l=1) ^3 sin(((6πl)/4))lnΓ((l/4))−π(γ+ln(8π))cot(((3π)/4))  =−2πΓ((1/4))+2πΓ((3/4))+π(γ+ln(8π))  =2π(Γ((3/4))−Γ((1/4)))+π(γ+ln(8π))  γ_0 ((1/4))−γ_0 ((3/4))=Ψ((3/4))−Ψ((1/4))=−πcot(((3π)/4))  =π  g′(0)=((4Γ′(1)−4ln(4)Γ(1))/4^2 )π+(2π(Γ((3/4))−Γ((1/4)))+π(γ+ln(8π)).(1/4)      =−(γ/4)π−((ln(2))/2)π+(π/2)(Γ((3/4))−Γ((1/4)))+((γπ)/4)+(π/4)ln(8π)  =(π/4)ln(2π)+(π/2)(Γ((3/4))−Γ((1/4)))
Φ=1ln(ln(x))1+x2dx=0ln(t)1+e2tetdt=0ln(t)et1+e2tdt=k00(1)kln(t)e(1+2k)tln(t)=stss=0g(s)=k00(1)ktse(1+2k)tdt=k00(1)kyseydy(1+2k)s+1=k0(1)k(1+2k)s+10yseydy=k0(1)k(1+2k)s+1Γ(s+1)=Γ(s+1)k0(1(1+4k)s+11(3+4k)s+1)=Γ(s+1)4s+1(k01(k+14)s+1k01(k+34)s+1)=Γ(s+1)4s+1(ζ(s+1,14)ζ(s+1,34)ζ(s,q)=n01(n+q)s,Zetshrwitzfunctionwewantg(0)Γ(s+1)4s+14s+1ln(4)Γ(s+1)42s+2s=0.lims0(ζ(s+1,14)ζ(s+1,34))+lims0s(ζ(s+1,14)ζ(s+1,34)).Γ(s+1)4s+1ζ(s+1,q)=1s+Σ(1)nn!γn(q)sn,laurentserieexpansionγn(q)Stieltjesconstanteζ(s+1,14)ζ(s+1,34)=h(s)=n0(1)nn!(γn(14)γn(34))snlims0h(s)=γ0(14)γ0(34)sh(s)=n1(1)n(n1)!(γn(14)γn(34)sn1lims0h(s)=γ1(34)γ1(14)γ1(34)γ1(134)=2π3l=1sin(6πl4)lnΓ(l4)π(γ+ln(8π))cot(3π4)=2πΓ(14)+2πΓ(34)+π(γ+ln(8π))=2π(Γ(34)Γ(14))+π(γ+ln(8π))γ0(14)γ0(34)=Ψ(34)Ψ(14)=πcot(3π4)=πg(0)=4Γ(1)4ln(4)Γ(1)42π+(2π(Γ(34)Γ(14))+π(γ+ln(8π)).14=γ4πln(2)2π+π2(Γ(34)Γ(14))+γπ4+π4ln(8π)=π4ln(2π)+π2(Γ(34)Γ(14))
Commented by mindispower last updated on 13/Dec/20
we can   use Γ(z)Γ(z+(1/2))=2^(1−2z) (√π)Γ(2z)  Γ((1/4)).Γ((3/4))=2^(1/2) (√π).Γ((1/2))=π(√2)  ⇒Γ((3/4))=π(√2).(1/(Γ((1/4))))...to express using  just Γ((1/4))
wecanuseΓ(z)Γ(z+12)=212zπΓ(2z)Γ(14).Γ(34)=212π.Γ(12)=π2Γ(34)=π2.1Γ(14)toexpressusingjustΓ(14)
Commented by mnjuly1970 last updated on 13/Dec/20
thanks alot   mr power......
thanksalotmrpower
Commented by mindispower last updated on 13/Dec/20
withe pleasur
withepleasur

Leave a Reply

Your email address will not be published. Required fields are marked *