Menu Close

advanced-calculus-evaluate-2-2-0-1-2-ln-2-1-x-x-dx-1-1-0-1-2-ln-2-1-x-x-dx-M-N-1970-




Question Number 118886 by mnjuly1970 last updated on 20/Oct/20
          ...  advanced  calculus...            evaluate ::  {_(2. Ω_2 = ∫_0 ^( (1/2))  ((ln^2 (1+x))/x) dx=??) ^(1. Ω_1 =∫_0 ^( (1/2))  ((ln^2 (1−x))/x)dx=??)                             ... M.N.1970...
advancedcalculusevaluate::{2.Ω2=012ln2(1+x)xdx=??1.Ω1=012ln2(1x)xdx=??M.N.1970
Answered by mindispower last updated on 20/Oct/20
Ω_1 =∫_0 ^(1/2) ((ln(1−x))/x)ln(1−x)dx by part   withe −∫_0 ^t ((ln(1−x))/x)dx=Li_2 (t)  =[−li_2 (x)ln(1−x)]_0 ^(1/2) −∫_0 ^(1/2) ((li_2 (x))/(1−x))dx  =li_2 ((1/2))ln(2)−A,let 1−x=t in A  Ω_1 =ln(2)li_2 ((1/2))+∫_1 ^(1/2) ((li_2 (1−t))/t)dt  we have li_2 (x)+li_2 (1−x)=(π^2 /6)−ln(x)ln(1−x)  ⇒Ω_1 =li_2 ((1/2))ln(2)+∫_1 ^(1/2) (π^2 /(6t))dt−∫_1 ^(1/2) ((li_2 (t))/t)dt−∫_1 ^(1/2) ((ln(t)ln(1−t))/t)dt  ∫_1 ^(1/2) ((ln(t)ln(1−t))/t)dt=[((ln^2 (t)ln(1−t))/2)]_1 ^(1/2) +∫_1 ^(1/2) ((ln^2 (t))/(2(1−t)))dt  1−t=x⇒  =((ln^3 ((1/2)))/2) −∫_0 ^(1/2) ((ln^2 (1−x))/(2x)) =−((ln^3 (2))/2)−(Ω_1 /2)   ⇒Ω_1 =ln(2)Li_2 ((1/2))+(π^2 /6)ln((1/2))−Li_3 ((1/2))+Li_3 (1)+((ln^3 (2))/2)+(1/2)Ω_1   li_2 ((1/2))+li_2 (1−(1/2))=(π^2 /6)−ln^2 (2)⇒li_2 ((1/2))=(π^2 /(12))−((ln^2 (2))/2)  li_3 (1)=ζ(3)  Ω_1 =2(ln(2)Li_2 ((1/2))−((π^2 ln(2))/6)−Li_3 ((1/2))+ζ(3)+((ln^3 (2))/2))  li_3 (z)+li_3 (1−z)+li_3 (1−(1/z))=ζ(3)+((π^2 ln(z))/6)+((ln^3 (z))/6)−((ln^2 (z))/2)ln(1−z)  z=(1/2)⇒  2li_3 ((1/2))+li_3 (−1)=ζ(3)+(π^2 /6)ln((1/2))−((ln^3 (2))/6)+((ln^3 (2))/2)  Li_3 (−1)=(1/8)ζ(3)−(7/8)ζ(3)=−(3/4)ζ(3)  li_3 ((1/2))=(7/8)ζ(3)−(π^2 /(12))ln(2)+((ln^3 (2))/6)    Ω_1 =2(ln(2)li_2 ((1/2))−(π^2 /6)ln(2)−li_3 ((1/2))+ζ(3)+((ln^3 (2))/6))  just replqce li_2 ((1/2)),and li_3 ((1/2))...  we get nswer[close[form
Ω1=012ln(1x)xln(1x)dxbypartwithe0tln(1x)xdx=Li2(t)=[li2(x)ln(1x)]012012li2(x)1xdx=li2(12)ln(2)A,let1x=tinAΩ1=ln(2)li2(12)+112li2(1t)tdtwehaveli2(x)+li2(1x)=π26ln(x)ln(1x)Ω1=li2(12)ln(2)+112π26tdt112li2(t)tdt112ln(t)ln(1t)tdt112ln(t)ln(1t)tdt=[ln2(t)ln(1t)2]112+112ln2(t)2(1t)dt1t=x=ln3(12)2012ln2(1x)2x=ln3(2)2Ω12Ω1=ln(2)Li2(12)+π26ln(12)Li3(12)+Li3(1)+ln3(2)2+12Ω1li2(12)+li2(112)=π26ln2(2)li2(12)=π212ln2(2)2li3(1)=ζ(3)Ω1=2(ln(2)Li2(12)π2ln(2)6Li3(12)+ζ(3)+ln3(2)2)li3(z)+li3(1z)+li3(11z)=ζ(3)+π2ln(z)6+ln3(z)6ln2(z)2ln(1z)z=122li3(12)+li3(1)=ζ(3)+π26ln(12)ln3(2)6+ln3(2)2Li3(1)=18ζ(3)78ζ(3)=34ζ(3)li3(12)=78ζ(3)π212ln(2)+ln3(2)6Ω1=2(ln(2)li2(12)π26ln(2)li3(12)+ζ(3)+ln3(2)6)justreplqceli2(12),andli3(12)wegetnswer[close[form
Commented by mnjuly1970 last updated on 21/Oct/20
thank you sir...  very nice...
thankyousirverynice
Commented by mindispower last updated on 21/Oct/20
withe pleasur
withepleasur

Leave a Reply

Your email address will not be published. Required fields are marked *