advanced-calculus-evaluate-2-2-0-1-2-ln-2-1-x-x-dx-1-1-0-1-2-ln-2-1-x-x-dx-M-N-1970- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 118886 by mnjuly1970 last updated on 20/Oct/20 …advancedcalculus…evaluate::{2.Ω2=∫012ln2(1+x)xdx=??1.Ω1=∫012ln2(1−x)xdx=??…M.N.1970… Answered by mindispower last updated on 20/Oct/20 Ω1=∫012ln(1−x)xln(1−x)dxbypartwithe−∫0tln(1−x)xdx=Li2(t)=[−li2(x)ln(1−x)]012−∫012li2(x)1−xdx=li2(12)ln(2)−A,let1−x=tinAΩ1=ln(2)li2(12)+∫112li2(1−t)tdtwehaveli2(x)+li2(1−x)=π26−ln(x)ln(1−x)⇒Ω1=li2(12)ln(2)+∫112π26tdt−∫112li2(t)tdt−∫112ln(t)ln(1−t)tdt∫112ln(t)ln(1−t)tdt=[ln2(t)ln(1−t)2]112+∫112ln2(t)2(1−t)dt1−t=x⇒=ln3(12)2−∫012ln2(1−x)2x=−ln3(2)2−Ω12⇒Ω1=ln(2)Li2(12)+π26ln(12)−Li3(12)+Li3(1)+ln3(2)2+12Ω1li2(12)+li2(1−12)=π26−ln2(2)⇒li2(12)=π212−ln2(2)2li3(1)=ζ(3)Ω1=2(ln(2)Li2(12)−π2ln(2)6−Li3(12)+ζ(3)+ln3(2)2)li3(z)+li3(1−z)+li3(1−1z)=ζ(3)+π2ln(z)6+ln3(z)6−ln2(z)2ln(1−z)z=12⇒2li3(12)+li3(−1)=ζ(3)+π26ln(12)−ln3(2)6+ln3(2)2Li3(−1)=18ζ(3)−78ζ(3)=−34ζ(3)li3(12)=78ζ(3)−π212ln(2)+ln3(2)6Ω1=2(ln(2)li2(12)−π26ln(2)−li3(12)+ζ(3)+ln3(2)6)justreplqceli2(12),andli3(12)…wegetnswer[close[form Commented by mnjuly1970 last updated on 21/Oct/20 thankyousir…verynice… Commented by mindispower last updated on 21/Oct/20 withepleasur Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-118887Next Next post: Question-53353 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.