Menu Close

advanced-calculus-evaluate-I-0-pi-2-ln-tan-x-sin-x-cos-x-2-dx-m-n-




Question Number 121869 by mnjuly1970 last updated on 12/Nov/20
         ... advanced  calculus...      evaluate ::                            I=^(???) ∫_0 ^( (π/2)) (((ln(tan(x)))/(sin(x)−cos(x))))^2 dx                         .m.n.
advancedcalculusevaluate::I=???0π2(ln(tan(x))sin(x)cos(x))2dx.m.n.
Answered by mindispower last updated on 12/Nov/20
problem in π/4 or Pv..?
probleminπ/4orPv..?
Commented by mnjuly1970 last updated on 13/Nov/20
0 to  (π/2) is correct...
0toπ2iscorrect
Answered by mindispower last updated on 13/Nov/20
(sin(x)−cos(x))^2 =(((tg(x)−1)^2 )/(1+tg^2 (x)))  I=∫_0 ^(π/2) ((ln^2 (tg(x)))/((tg(x)−1)^2 ))dtg(x)  tg(x)=t⇒I=∫_0 ^∞ ((ln^2 (r))/((r−1)^2 ))dr  =∫_0 ^1 (((ln^2 (r))/((r−1)^2 )).dr+((ln^2 ((1/r)))/(((1/r)−1)^2 )).(dr/r^2 ))  ∫_0 ^1 ((ln^2 (r)dr)/((r−1)^2 ))..IBP⇒  lim_(t→0) [((−ln^2 (r))/(r−1))]_t ^1 +2∫_t ^1 ((ln(r))/(r(r−1)))dr  =lim_(t→0) ((ln^2 (t))/(t−1))+2∫_t ^1 ((ln(r))/(r−1))dr−2∫_t ^1 ((ln(r))/r)dr  =lim_(t→0) ((ln^2 (t))/(t−1))−2∫_0 ^(1−t) ((ln(1−r))/r)dr+ln^2 (t)   =lim_(t→0) [(((ln^2 (t))/(t−1))+ln^2 (t))+2Li_2 (1−t)]  =lim_(t→0) [((tln^2 (t))/(t−1))]+2Li_2 (1)  cause Li_2 is continus  =2Li_2 (1)=2.(π^2 /6)=(π^2 /3)
(sin(x)cos(x))2=(tg(x)1)21+tg2(x)I=0π2ln2(tg(x))(tg(x)1)2dtg(x)tg(x)=tI=0ln2(r)(r1)2dr=01(ln2(r)(r1)2.dr+ln2(1r)(1r1)2.drr2)01ln2(r)dr(r1)2..IBPlimt0[ln2(r)r1]t1+2t1ln(r)r(r1)dr=limt0ln2(t)t1+2t1ln(r)r1dr2t1ln(r)rdr=limt0ln2(t)t1201tln(1r)rdr+ln2(t)=limt0[(ln2(t)t1+ln2(t))+2Li2(1t)]=limt0[tln2(t)t1]+2Li2(1)causeLi2iscontinus=2Li2(1)=2.π26=π23
Commented by mnjuly1970 last updated on 13/Nov/20
bravo bravo  sir  mindspower   thank you so much...
bravobravosirmindspowerthankyousomuch
Commented by mindispower last updated on 13/Nov/20
thanx always a pleasur
thanxalwaysapleasur

Leave a Reply

Your email address will not be published. Required fields are marked *