Menu Close

advanced-calculus-evaluate-I-0-sin-x-sin-2x-x-dx-m-n-1970-




Question Number 116436 by mnjuly1970 last updated on 04/Oct/20
                   ... advanced  calculus...        evaluate ::                    I= ∫_( 0) ^(  ∞)   (((sin(x).sin(2x))/x)) dx =???            ... m.n.1970...
advancedcalculusevaluate::I=0(sin(x).sin(2x)x)dx=???m.n.1970
Commented by Bird last updated on 04/Oct/20
it seems that integral is divergent!
itseemsthatintegralisdivergent!
Commented by mathdave last updated on 04/Oct/20
is not divergent oooo
isnotdivergentoooo
Answered by mnjuly1970 last updated on 04/Oct/20
Answered by Bird last updated on 05/Oct/20
let take a try  we have  sinx.sin(2x)=cos((π/2)−x)cos((π/2)−2x)  =(1/2){cos(π−3x)+cos(x)}  =(1/2){cosx−cos(3x)} ⇒  I =(1/2)∫_0 ^∞  ((cosx−cos(3x))/x)dx  I =∫_0 ^∞  ((1−cos(3x))/(2x))dx−∫_0 ^∞ ((1−cosx)/(2x))dx  =(1/2)(u−v)  let f(a) =∫_0 ^∞  ((1−cosx)/x)e^(−ax) dx with a>0  f^′ (a) =−∫_0 ^∞   (1−cosx)e^(−ax) dx  =∫_0 ^∞  e^(−ax) cosxdx−∫_0 ^∞  e^(−ax) dx  ∫_0 ^∞  e^(−ax) dx=[−(1/a)e^(−ax) ]_0 ^∞   =(1/a)  ∫_0 ^∞  e^(−ax+ix) dx =∫_0 ^∞ e^((−a+i)x) dx  =[(1/(−a+i)) e^((−a+i)x) ]_0 ^∞ =−(1/(−a+i))=(1/(a−i))  =((a+i)/(a^2 +1)) ⇒∫_0 ^∞ e^(−ax)  cosxdx  =Re(...) =(a/(1+a^2 )) ⇒  f^′ (a) =(a/(1+a^2 ))−(1/a) ⇒  f(a) =(1/2)ln(1+a^2 )−lna +c  =ln(((√(1+a^2 ))/a)) +c  lim_(a→+∞) f(a) =0 =c ⇒  f(a) =ln(((√(1+a^2 ))/a))  ∫_0 ^∞  ((1−cosx)/x)dx =lim_(a→0)  f(a)  dont exist also ∫_0 ^∞  ((1−cos(3x))/x)dxdont  exist but we see  ∫_0 ^∞  ((1−cos(3x))/x)dx=_(3x=t)  3∫_0 ^∞  ((1−cost)/t)(dt/3)  =∫_0 ^∞   ((1−cosx)/x)dx I =0
lettakeatrywehavesinx.sin(2x)=cos(π2x)cos(π22x)=12{cos(π3x)+cos(x)}=12{cosxcos(3x)}I=120cosxcos(3x)xdxI=01cos(3x)2xdx01cosx2xdx=12(uv)letf(a)=01cosxxeaxdxwitha>0f(a)=0(1cosx)eaxdx=0eaxcosxdx0eaxdx0eaxdx=[1aeax]0=1a0eax+ixdx=0e(a+i)xdx=[1a+ie(a+i)x]0=1a+i=1ai=a+ia2+10eaxcosxdx=Re()=a1+a2f(a)=a1+a21af(a)=12ln(1+a2)lna+c=ln(1+a2a)+clima+f(a)=0=cf(a)=ln(1+a2a)01cosxxdx=lima0f(a)dontexistalso01cos(3x)xdxdontexistbutwesee01cos(3x)xdx=3x=t301costtdt3=01cosxxdxI=0
Commented by Bird last updated on 05/Oct/20
u=v ⇒I =0
u=vI=0
Commented by mnjuly1970 last updated on 05/Oct/20
solution:   method 1 : I =L [((sin(x).sin(2x)/x)]_(s=0)       = L [sin(x) sin(2x)]=(1/2) L [cos(x−2x) −cos(x+2x)]    =(1/2) L [cos(x)]− (1/2) L [cos(3x)]  =(1/2)∗ (s/(s^2 +1)) −(1/2)∗ (s/(s^2 +9))  I = {(1/2)∫_s ^( ∞) (u/(u^2 +1)) du − (1/2) ∫_s ^( ∞) (u/(u^2 +9))du}_(s=0)    ={(1/4) [ln (((u^2  +1)/(u^2 +9)))]_( u=s) ^( u=∞) = (1/4) ln((1/9))−(1/4) ln(((s^2 +1)/(s^2 +9)) )}_(s=0)     =[((−1)/2) ln(3) − (1/4)ln(((s^2 +1)/(s^2 +9)))]_( s=0)    =   thank you your effort  and  work  is  admirable ...
solution:method1:I=L[sin(x).sin(2xx]s=0=L[sin(x)sin(2x)]=12L[cos(x2x)cos(x+2x)]=12L[cos(x)]12L[cos(3x)]=12ss2+112ss2+9I={12suu2+1du12suu2+9du}s=0={14[ln(u2+1u2+9)]u=su==14ln(19)14ln(s2+1s2+9)}s=0=[12ln(3)14ln(s2+1s2+9)]s=0=thankyouyoureffortandworkisadmirable
Answered by mathdave last updated on 05/Oct/20
solution  we know sinxsin2x=(1/2)(cosx−cos3x)  let I=∫_0 ^∞ ((sinxsin2x)/x)dx=(1/2)∫_0 ^∞ (((cosx−cos3x)/x))dx  from maz identity   ∫_0 ^∞ f(t)G(t)dt=∫^∞ f(s)g(s)ds  but note    L(f(t))=f(s)  and  L^(−1) (G(t))=g(s)  I=(1/2)∫_0 ^∞ L(cosx−cos3x)L^(−1) ((1/x))_(s=x) ds   but l^(−1) ((1/x))=1  I=(1/2)∫_0 ^∞ ((s/(s^2 +1))−(s/(s^2 +9)))ds(1/2)∫_0 ^∞ ((2s)/(2(s^2 +1)))ds−(1/2)∫_0 ^∞ ((2s)/(2(s^2 +9)))ds=(1/4)ln(((s^2 +1)/(s^2 +9)))_0 ^∞   I=(1/4)(0−ln((1/9)))=((ln(3))/2)  ∵∫_0 ^∞ ((sinxsin2x)/x)dx=((ln(3))/2)  by mathdave(05/10/2020)
solutionweknowsinxsin2x=12(cosxcos3x)letI=0sinxsin2xxdx=120(cosxcos3xx)dxfrommazidentity0f(t)G(t)dt=f(s)g(s)dsbutnoteL(f(t))=f(s)andL1(G(t))=g(s)I=120L(cosxcos3x)L1(1x)s=xdsbutl1(1x)=1I=120(ss2+1ss2+9)ds1202s2(s2+1)ds1202s2(s2+9)ds=14ln(s2+1s2+9)0I=14(0ln(19))=ln(3)20sinxsin2xxdx=ln(3)2bymathdave(05/10/2020)
Commented by mnjuly1970 last updated on 06/Oct/20
thank you  very nice as  always...
thankyouveryniceasalways

Leave a Reply

Your email address will not be published. Required fields are marked *