Question Number 116436 by mnjuly1970 last updated on 04/Oct/20

Commented by Bird last updated on 04/Oct/20

Commented by mathdave last updated on 04/Oct/20

Answered by mnjuly1970 last updated on 04/Oct/20

Answered by Bird last updated on 05/Oct/20
![let take a try we have sinx.sin(2x)=cos((π/2)−x)cos((π/2)−2x) =(1/2){cos(π−3x)+cos(x)} =(1/2){cosx−cos(3x)} ⇒ I =(1/2)∫_0 ^∞ ((cosx−cos(3x))/x)dx I =∫_0 ^∞ ((1−cos(3x))/(2x))dx−∫_0 ^∞ ((1−cosx)/(2x))dx =(1/2)(u−v) let f(a) =∫_0 ^∞ ((1−cosx)/x)e^(−ax) dx with a>0 f^′ (a) =−∫_0 ^∞ (1−cosx)e^(−ax) dx =∫_0 ^∞ e^(−ax) cosxdx−∫_0 ^∞ e^(−ax) dx ∫_0 ^∞ e^(−ax) dx=[−(1/a)e^(−ax) ]_0 ^∞ =(1/a) ∫_0 ^∞ e^(−ax+ix) dx =∫_0 ^∞ e^((−a+i)x) dx =[(1/(−a+i)) e^((−a+i)x) ]_0 ^∞ =−(1/(−a+i))=(1/(a−i)) =((a+i)/(a^2 +1)) ⇒∫_0 ^∞ e^(−ax) cosxdx =Re(...) =(a/(1+a^2 )) ⇒ f^′ (a) =(a/(1+a^2 ))−(1/a) ⇒ f(a) =(1/2)ln(1+a^2 )−lna +c =ln(((√(1+a^2 ))/a)) +c lim_(a→+∞) f(a) =0 =c ⇒ f(a) =ln(((√(1+a^2 ))/a)) ∫_0 ^∞ ((1−cosx)/x)dx =lim_(a→0) f(a) dont exist also ∫_0 ^∞ ((1−cos(3x))/x)dxdont exist but we see ∫_0 ^∞ ((1−cos(3x))/x)dx=_(3x=t) 3∫_0 ^∞ ((1−cost)/t)(dt/3) =∫_0 ^∞ ((1−cosx)/x)dx I =0](https://www.tinkutara.com/question/Q116583.png)
Commented by Bird last updated on 05/Oct/20

Commented by mnjuly1970 last updated on 05/Oct/20
![solution: method 1 : I =L [((sin(x).sin(2x)/x)]_(s=0) = L [sin(x) sin(2x)]=(1/2) L [cos(x−2x) −cos(x+2x)] =(1/2) L [cos(x)]− (1/2) L [cos(3x)] =(1/2)∗ (s/(s^2 +1)) −(1/2)∗ (s/(s^2 +9)) I = {(1/2)∫_s ^( ∞) (u/(u^2 +1)) du − (1/2) ∫_s ^( ∞) (u/(u^2 +9))du}_(s=0) ={(1/4) [ln (((u^2 +1)/(u^2 +9)))]_( u=s) ^( u=∞) = (1/4) ln((1/9))−(1/4) ln(((s^2 +1)/(s^2 +9)) )}_(s=0) =[((−1)/2) ln(3) − (1/4)ln(((s^2 +1)/(s^2 +9)))]_( s=0) = thank you your effort and work is admirable ...](https://www.tinkutara.com/question/Q116624.png)
Answered by mathdave last updated on 05/Oct/20

Commented by mnjuly1970 last updated on 06/Oct/20
