Menu Close

advanced-calculus-evaluation-of-0-pi-2-sin-x-log-sin-x-dx-by-using-the-euler-beta-and-gamma-function-p-1-2-2-0-pi-2-sin-2p-1-x-




Question Number 123745 by mnjuly1970 last updated on 27/Nov/20
              ...advanced   calculus...    evaluation  of:               Ω=∫_0 ^( (π/2)) sin(x)log(sin(x))dx      by using the euler beta and gamma function:          β(p,(1/2))=2∫_0 ^(π/2) sin^(2p−1) (x)dx     ((dβ(p,(1/2)))/dp) =2∫_0 ^(π/2) 2sin^(2p−1) (x)ln(sin(x))dx  =4∫_0 ^(π/2) sin^(2p−1) (x)ln(sin(x))dx  Ω=(1/4)[((dβ(p,(1/2)))/dp)]_(p=1)    ((d(β(p,(1/2))))/dp)=(√π)[((Γ′(p)Γ(p+(1/2))−Γ′(p+(1/2))Γ(p))/(Γ^2 (p+(1/2))))]_(p=1)    Ω=(1/4)((√π)[((Γ^′ (1)Γ((3/2))−Γ′((3/2))Γ(1))/(Γ^2 ((3/2))))])  =((√π)/4)[((−γ(((√π)/2))−((√π)/2)(2−γ−2ln(2)))/(π/4))]  =((√π)/4)∗((√π)/2)(((−γ−2+γ+2ln(2))/(π/4)))  =ln(2)−1           ... m.n.july.1970...
advancedcalculusevaluationof:Ω=0π2sin(x)log(sin(x))dxbyusingtheeulerbetaandgammafunction:β(p,12)=20π2sin2p1(x)dxdβ(p,12)dp=20π22sin2p1(x)ln(sin(x))dx=40π2sin2p1(x)ln(sin(x))dxΩ=14[dβ(p,12)dp]p=1d(β(p,12))dp=π[Γ(p)Γ(p+12)Γ(p+12)Γ(p)Γ2(p+12)]p=1Ω=14(π[Γ(1)Γ(32)Γ(32)Γ(1)Γ2(32)])=π4[γ(π2)π2(2γ2ln(2))π4]=π4π2(γ2+γ+2ln(2)π4)=ln(2)1m.n.july.1970

Leave a Reply

Your email address will not be published. Required fields are marked *