Menu Close

advanced-calculus-evsluate-I-0-xsin-2x-x-2-4-dx-hint-0-cos-px-x-2-1-dx-pi-2-e-p-p-gt-0-m




Question Number 117088 by mnjuly1970 last updated on 09/Oct/20
          ... advanced   calculus...           evsluate ::             I=∫_0 ^( ∞) ((xsin(2x))/(x^2 +4)) dx =?       hint:            Φ=∫_0 ^( ∞) ((cos(px))/(x^2 +1))dx =(π/2)e^(−p)     (p>0)            .m.n 1970
advancedcalculusevsluate::I=0xsin(2x)x2+4dx=?hint:Φ=0cos(px)x2+1dx=π2ep(p>0).m.n1970
Answered by mnjuly1970 last updated on 09/Oct/20
Φ =∫_0 ^( ∞)  ((cos(px))/(x^2 +1)) =_(respect  to  p) ^((diff  both sides)) (π/2)e^(−p )   =−∫_0 ^( ∞)  ((xsin(px))/(x^2 +1))dx=−(π/2)e^(−p)   =∫_0 ^( ∞)  ((xsin(px))/(x^2 +1))dx=(π/2)e^p   I =^(x=2t) ∫_0 ^( ∞) ((tsin(4t))/(t^2 +1))dt =^Φ  (π/2)e^(−4)      ..m.n.1970...
Φ=0cos(px)x2+1=(diffbothsides)respecttopπ2ep=0xsin(px)x2+1dx=π2ep=0xsin(px)x2+1dx=π2epI=x=2t0tsin(4t)t2+1dt=Φπ2e4..m.n.1970
Answered by Bird last updated on 10/Oct/20
2I =∫_(−∞) ^(+∞ )  ((xsin(2x))/(x^(2 ) +4))dx  =Im(∫_(−∞) ^(+∞)  ((xe^(2ix) )/(x^2  +4))dx) let  ϕ(z) =((z e^(2iz) )/(z^2  +4)) ⇒ϕ(z) =((ze^(2iz) )/((z−2i)(z+2i)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{Res(ϕ,2i)}  =2iπ ×((2i e^(−4) )/(4i)) =((−4π e^(−4) )/(4i)) =iπ e^(−4)   ⇒2I =π e^(−4)  ⇒I =(π/2)e^(−4)
2I=+xsin(2x)x2+4dx=Im(+xe2ixx2+4dx)letφ(z)=ze2izz2+4φ(z)=ze2iz(z2i)(z+2i)+φ(z)dz=2iπ{Res(φ,2i)}=2iπ×2ie44i=4πe44i=iπe42I=πe4I=π2e4
Commented by mnjuly1970 last updated on 10/Oct/20
grateful mr bird   very nice as always..
gratefulmrbirdveryniceasalways..

Leave a Reply

Your email address will not be published. Required fields are marked *