Menu Close

Advanced-calculus-Find-the-value-of-the-following-series-n-1-1-n-n-n-2-n-z-n-1-1-n-z-




Question Number 188381 by mnjuly1970 last updated on 28/Feb/23
            Advanced  calculus         Find  the  value  of the following series.             Ω = Σ_(n=1) ^∞  (( (−1)^( n)  ζ ( n ))/(n. 2^( n) )) = ?             ζ ( z ) = Σ_( n=1) ^∞ (( 1)/(n^( z)  ))     ;    Re ( z )>1
AdvancedcalculusFindthevalueofthefollowingseries.Ω=n=1(1)nζ(n)n.2n=?ζ(z)=n=11nz;Re(z)>1
Answered by witcher3 last updated on 15/Mar/23
n≥2  ζ(1) diverge
n2ζ(1)diverge
Answered by witcher3 last updated on 18/Mar/23
Ω=Σ_(n≥2) (((−1)^n ζ(n))/(n.2^n ))  We have Γ(n)ζ(n)=∫_0 ^∞ (x^(n−1) /(e^x −1))dx,∀n≥2  ζ(n)=(1/((n−1)!))∫_0 ^∞ (x^(n−1) /(e^x −1))dx  𝛀=Σ_(n≥2) ∫_0 ^∞ (((−1)^n x^(n−1) )/(2^n .n!))dx  Σ_(n≥0) (((−1)^n x^(n−1) )/(2^n .n!))   cv Uniformly to exp  this We can exchangeΣ and ∫ in Ω  ⇒Ω=∫_0 ^∞ (1/x)Σ_(n≥2) (((−(x/2))^n )/(n!))dx=∫_0 ^∞ ((e^(−(x/2)) −1+(x/2))/(x(e^x −1)))dx  =∫_0 ^∞ −(e^(−x) /(x(e^(−(x/2)) +1)))+(e^(−x) /(2(1−e^(−x) )))dx  f(a)=∫_0 ^∞ e^(−ax) (−(1/(x(e^(−(x/2)) +1)))+(1/(2(1−e^(−x) ))))dx  f′(a)=∫_0 ^∞ e^(−ax) ((1/(e^(−(x/2)) +1))−(x/(2(1−e^(−x) ))))dx  ∫_0 ^∞ −(x/(2(1−e^(−x) )))e^(−ax) dx=−(1/2)Σ_(k≥0) ∫_0 ^∞ xe^(−(a+k)x)   =−(1/2).Γ(2)Σ_(k≥0) (1/((k+a)^2 ))=−(1/2)Ψ^((1)) (a)  ∫_0 ^∞ (e^(−ax) /(e^(−(x/2)) +1))=Σ_(k≥0) (−1)^k ∫_0 ^∞ e^(−(a+(k/2))x)   =Σ_(k≥0) (((−1)^k )/((a+(k/2))))=Σ_(k≥0) (1/(a+k))−(1/(a+(1/2)+k))  =Ψ(a+(1/2))−𝚿(a)  f′(a)=Ψ(a+(1/2))−Ψ(a)−((Ψ^((1)) (a))/2)  f(a)=log(((Γ(a+(1/2)))/(Γ(a))))−(1/2)Ψ(a)+c  lim_(a→∞) ∫_0 ^∞ e^(−ax) (−(1/(x(e^(−(x/2)) +1)))+(1/(2(1−e^(−x) ))))dx  =∫_0 ^∞ lim_(a→∞) e^(−ax) (−(1/(x(e^(−(x/2)) +1)))+(1/(2(1−e^(−x) ))))dx=0  ⇒lim_(a→∞) ln(((Γ(a+(1/2)))/(Γ(a))))−((Ψ(a))/2)+c=0  Γ(a)∼(√(2π)).a^(a−(1/2)) e^(−a)   Γ(a+(1/2))∼(√(2π))a^a e^(−a)   Ψ(a)∼ln(a)  lim_(a→∞) f(a)=lim_(a→∞) ln((√a))−(1/2)(ln(a))=0⇒c=0  f(a)=ln(((Γ(a+(1/2)))/(Γ(a))))−((Ψ(a))/2)  Ω=f(1)=ln(((Γ((3/2)))/(Γ(1))))−((𝚿(1))/2)=ln(((√π)/2))−((Ψ(1))/2)  =((ln(π)+γ)/2)−ln(2)=Σ_(n≥2) (((−1)^n ζ(n))/(2^n .n))
Ω=n2(1)nζ(n)n.2nWehaveΓ(n)ζ(n)=0xn1ex1dx,n2ζ(n)=1(n1)!0xn1ex1dxΩ=n20(1)nxn12n.n!dxn0(1)nxn12n.n!cvUniformlytoexpthisWecanexchangeΣandinΩΩ=01xn2(x2)nn!dx=0ex21+x2x(ex1)dx=0exx(ex2+1)+ex2(1ex)dxf(a)=0eax(1x(ex2+1)+12(1ex))dxf(a)=0eax(1ex2+1x2(1ex))dx0x2(1ex)eaxdx=12k00xe(a+k)x=12.Γ(2)k01(k+a)2=12Ψ(1)(a)0eaxex2+1=k0(1)k0e(a+k2)x=k0(1)k(a+k2)=k01a+k1a+12+k=Ψ(a+12)Ψ(a)f(a)=Ψ(a+12)Ψ(a)Ψ(1)(a)2f(a)=log(Γ(a+12)Γ(a))12Ψ(a)+clima0eax(1x(ex2+1)+12(1ex))dx=0limeaax(1x(ex2+1)+12(1ex))dx=0limlna(Γ(a+12)Γ(a))Ψ(a)2+c=0Γ(a)2π.aa12eaΓ(a+12)2πaaeaΨ(a)ln(a)limfa(a)=limlna(a)12(ln(a))=0c=0f(a)=ln(Γ(a+12)Γ(a))Ψ(a)2Ω=f(1)=ln(Γ(32)Γ(1))Ψ(1)2=ln(π2)Ψ(1)2=ln(π)+γ2ln(2)=n2(1)nζ(n)2n.n

Leave a Reply

Your email address will not be published. Required fields are marked *