Question Number 114045 by mnjuly1970 last updated on 17/Sep/20

Answered by Dwaipayan Shikari last updated on 16/Sep/20
![∫_0 ^1 ((log(1+x))/(x(1+x)))=∫_0 ^1 ((log(1+x))/x)−((log(1+x))/((1+x)))dx =∫_0 ^1 (−1)^n Σ_(n=1) ^∞ (x^(n−1) /n)−∫_1 ^2 ((logu)/u)du =Σ_(n=1) ^∞ (−1)^n (1/n^2 )−(1/2)[(logu)^2 ]_1 ^2 =(π^2 /(12))−(1/2)(log2)^2](https://www.tinkutara.com/question/Q114046.png)
Answered by mathmax by abdo last updated on 16/Sep/20
![I =∫_0 ^1 ((ln(1+x))/(x(1+x)))dx =∫_0 ^1 ((1/x)−(1/(x+1)))ln(1+x)dx =∫_0 ^1 ((ln(1+x))/x)dx−∫_0 ^1 ((ln(1+x))/(1+x))dx but ∫_0 ^1 ((ln(1+x))/(1+x)) dx =_(1+x=t) ∫_1 ^2 ((ln(t))/(x>t)) dt =[(1/2)ln^2 t]_1 ^2 =((ln^2 (2))/2) we have (d/dx)ln(1+x)=(1/(1+x)) =Σ_(n=0) ^∞ (−1)^n x^n ⇒ln(1+x)=Σ_(n=0) ^∞ (((−1)^n x^(n+1) )/(n+1)) =Σ_(n=1) ^∞ (((−1)^(n−1) x^n )/n) ⇒((ln(1+x))/x) =Σ_(n=1) ^∞ (((−1)^(n−1) x^(n−1) )/n) ⇒ ∫_0 ^1 ((ln(1+x))/x)dx =Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 ) =−Σ_(n=1) ^∞ (((−1)^n )/n^2 ) =−{ 2^(1−2) −1}ξ(2) =(π^2 /(12)) ⇒ I =(1/2)ln^2 (2)−(π^2 /(12))](https://www.tinkutara.com/question/Q114048.png)
Commented by mathmax by abdo last updated on 16/Sep/20

Commented by mnjuly1970 last updated on 17/Sep/20

Answered by mathmax by abdo last updated on 16/Sep/20

Commented by mnjuly1970 last updated on 17/Sep/20

Answered by mindispower last updated on 17/Sep/20
