Menu Close

advanced-calculus-prove-that-0-1-cos-log-x-1-log-x-dx-log-2-2-adopted-from-youtube-youtube-solution-is-not-considered




Question Number 125133 by mnjuly1970 last updated on 08/Dec/20
             ... ◂advanced   calculus▶...        prove  that :::     Ω=∫_0 ^( 1) {((cos(log(x))−1)/(log(x)))}dx=((log(2))/2)        ...∗adopted from youtube∗...      ∗ ∗ youtube solution is not considered ∗ ∗
advancedcalculusprovethat:::Ω=01{cos(log(x))1log(x)}dx=log(2)2adoptedfromyoutubeyoutubesolutionisnotconsidered
Answered by mathmax by abdo last updated on 08/Dec/20
I=∫_0 ^1  ((cos(logx)−1)/(logx)) we do the chamgement logx=−t ⇒x=e^(−t)   I=∫_∞ ^0  ((cost−1)/(−t))(−e^(−t) )dt =−∫_0 ^∞  ((cost−1)/t)e^(−t) dt  let f(a) =∫_0 ^∞  ((cost−1)/t)e^(−at)  dt  with a>0  we have  f^′ (a)=−∫_0 ^∞  (cost−1)e^(−at) dt =−∫_0 ^∞  e^(−at) cost +∫_0 ^∞  e^(−at)  dt  but  ∫_0 ^∞  e^(−at) dt =[−(1/a)e^(−at) ]_0 ^∞  =(1/a)  ∫_0 ^∞  e^(−at) cost dt =Re(∫_0 ^∞  e^(−at+it) dt) snd  ∫_0 ^∞  e^((−a+i)t) dt =[(1/(−a+i))e^((−a+i)t) ]_0 ^∞  =((−1)/(a−i)){−1} =(1/(a−i))=((a+i)/(a^2  +1))  ⇒∫_0 ^∞  e^(−at) cost dt =(a/(a^2  +1)) ⇒f^′ (a)=−(a/(1+a^2 ))+(1/a) ⇒  f(a)=lna−(1/2)ln(1+a^2 )+C =ln((a/( (√(a^2 +1))))) +c  ∣f(a)∣≤(m/a)→0 (a→+∞) ⇒c=0 ⇒f(a)=ln((a/( (√(1+a^2 )))))  I =−f(1)=−ln((1/( (√2))))=ln((√2))=((ln(2))/2)
I=01cos(logx)1logxwedothechamgementlogx=tx=etI=0cost1t(et)dt=0cost1tetdtletf(a)=0cost1teatdtwitha>0wehavef(a)=0(cost1)eatdt=0eatcost+0eatdtbut0eatdt=[1aeat]0=1a0eatcostdt=Re(0eat+itdt)snd0e(a+i)tdt=[1a+ie(a+i)t]0=1ai{1}=1ai=a+ia2+10eatcostdt=aa2+1f(a)=a1+a2+1af(a)=lna12ln(1+a2)+C=ln(aa2+1)+cf(a)∣⩽ma0(a+)c=0f(a)=ln(a1+a2)I=f(1)=ln(12)=ln(2)=ln(2)2
Commented by mnjuly1970 last updated on 08/Dec/20
thank you so much  mr max .grateful....
thankyousomuchmrmax.grateful.
Commented by mathmax by abdo last updated on 08/Dec/20
you are welcome sir
youarewelcomesir
Answered by Dwaipayan Shikari last updated on 08/Dec/20
∫_0 ^1 ((cos(logx)−1)/(logx))dx  =∫_(−∞) ^0 e^t  ((cos(t)−1)/t) dt     logx=t⇒(1/x)=(dt/dx)             I(a)=2∫_0 ^∞ ((cost−1)/t)e^(−at) dt  I′(a)=−∫_0 ^∞ coste^(−at) +∫_0 ^∞ e^(−at) dt  =−(1/2)∫_0 ^∞ e^(−t(a−i)) +e^(−t(i+a)) dt +(1/a)  =−(1/2)((1/(a−i))+(1/(i+a)))+(1/a) =−(a/(a^2 +1))+(1/a)  I(a)=−(1/2)log(a^2 +1)+log(a)+C  a→∞  C=0  I(1)=(1/2)log(2)
01cos(logx)1logxdx=0etcos(t)1tdtlogx=t1x=dtdxI(a)=20cost1teatdtI(a)=0costeat+0eatdt=120et(ai)+et(i+a)dt+1a=12(1ai+1i+a)+1a=aa2+1+1aI(a)=12log(a2+1)+log(a)+CaC=0I(1)=12log(2)
Commented by mnjuly1970 last updated on 08/Dec/20
bravo mr payan.thank you  so much..
bravomrpayan.thankyousomuch..
Answered by mnjuly1970 last updated on 08/Dec/20
solution:   Ω=Re(∫_0 ^( 1) ((x^i −1)/(log(x)))dx)=Re(ln(1+i))  =Re(ln((√2) e^((iπ)/4) ))=Re[ln((√2) )+i(π/4)]    ∴  Ω =((ln(2))/2)   ✓
solution:Ω=Re(01xi1log(x)dx)=Re(ln(1+i))=Re(ln(2eiπ4))=Re[ln(2)+iπ4]Ω=ln(2)2
Commented by mathmax by abdo last updated on 08/Dec/20
you are taking route 66 in america..!
youaretakingroute66inamerica..!
Commented by mnjuly1970 last updated on 08/Dec/20
  sincerely yours    m.n.1970
sincerelyyoursm.n.1970
Commented by mnjuly1970 last updated on 09/Dec/20
   sir max   since :some integrals and problems   were solved many time  therefore  i tried  to shorten the solution.  example :    ln(a+1)=∫_0 ^( 1) (((x^a −1)/(ln(x))))dx ,....
sirmaxsince:someintegralsandproblemsweresolvedmanytimethereforeitriedtoshortenthesolution.example:ln(a+1)=01(xa1ln(x))dx,.

Leave a Reply

Your email address will not be published. Required fields are marked *