advanced-calculus-prove-that-0-1-ln-x-1-x-3-1-3-dx-pi-3-3-ln-3-pi-3-3-m-n-1970- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 120774 by mnjuly1970 last updated on 02/Nov/20 …advancedcalculus…provethat::Ω=∫01ln(x)1−x33dx=???−π33(ln(3)+π33)…m.n.1970… Answered by mindispower last updated on 02/Nov/20 letx3=t⇒dx=t−213dt3⇒Ω=13∫01ln(t13)(1−t)13.t−213dt3Ω=19∫01(1−t)−13t−213ln(t)dtln(t)=∂∂axa∣x=0Ω=∂a19∫01(1−t)13t−23+adt9Ω=∂∂aβ(23,13+a)∣a=0∂∂yβ(x,y)=β(x,y)[Ψ(y)−Ψ(x+y)]∂β∂a=β(23,13+a)[Ψ(13+a)−Ψ(1+a)]9Ω=β(13,23)[Ψ(13)−Ψ(1)]GaussetheoremΨ(pq)=−γ−ln(2q)−π2cot(pπq)+2∑[q−12]n=1cos(2πnpq)ln(sin(nπq))Ψ(13)=−γ−ln(6)−π2.13−ln(32)=−γ−ln(33)−π23Ψ(1)=−γβ(13,23)=Γ(13)Γ(23)Γ(2)=.Γ(13)Γ(23)=πsin(π3)=2π39Ω=2π3(−γ−ln(33)−π23+γ)=2π3(−ln(33)−π23)Ω=−π27(−3ln(27)−π)=−π27(π+3ln(27)) Commented by mnjuly1970 last updated on 03/Nov/20 thanksalotsirmindspowerpeacebeuponyou… Commented by mindispower last updated on 03/Nov/20 withepleasursirhaveaniceDay Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: advanced-calculus-evaluate-0-1-ln-x-tan-1-x-dx-m-n-1970-Next Next post: make-r-the-subject-of-the-relation-m-4-u-r-v-r- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.