Menu Close

advanced-calculus-prove-that-0-1-ln-x-1-x-3-1-3-dx-pi-3-3-ln-3-pi-3-3-m-n-1970-




Question Number 120774 by mnjuly1970 last updated on 02/Nov/20
          ...advanced  calculus...         prove  that ::                Ω=∫_0 ^( 1) ((ln(x))/( ((1−x^3 ))^(1/3) ))dx=^(???) −(π/(3(√3)))(ln(3)+(π/(3(√3))))                      ...m.n.1970...
advancedcalculusprovethat::Ω=01ln(x)1x33dx=???π33(ln(3)+π33)m.n.1970
Answered by mindispower last updated on 02/Nov/20
let x^3 =t⇒dx=t^(−2(1/3)) (dt/3)  ⇒Ω=(1/3)∫_0 ^1 ((ln(t^(1/3) ))/((1−t)^(1/3) )).t^(−2(1/3)) (dt/3)  Ω=(1/9)∫_0 ^1 (1−t)^(−(1/3)) t^(−2(1/3)) ln(t)dt  ln(t)=(∂/∂a)x^a ∣_(x=0)   Ω=∂_a (1/9)∫_0 ^1 (1−t)^(1/3) t^(−(2/3)+a) dt  9Ω=(∂/∂a)β((2/3),(1/3)+a)∣_(a=0)   (∂/∂y)β(x,y)=β(x,y)[Ψ(y)−Ψ(x+y)]  (∂β/∂a)=β((2/3) ,(1/3)+a)[Ψ((1/3) +a)−Ψ(1+a)]  9Ω=β((1/3),(2/3))[Ψ((1/3))−Ψ(1)]  Gausse theorem  Ψ((p/q))=−γ−ln(2q)−(π/2)cot(((pπ)/q))+2Σ_(n=1) ^([((q−1)/2)]) cos(((2πnp)/q))ln(sin(((nπ)/q)))  Ψ((1/3))=−γ−ln(6)−(π/2).(1/( (√3)))−ln(((√3)/2))  =−γ−ln(3(√3))−(π/(2(√3)))  Ψ(1)=−γ  β((1/3),(2/3))=((Γ((1/3))Γ((2/3)))/(Γ(2)))=.Γ((1/3))Γ((2/3))=(π/(sin((π/3))))  =((2π)/( (√3)))  9Ω=((2π)/( (√3)))(−γ−ln(3(√3))−(π/(2(√3)))+γ)  =((2π)/( (√3)))(−ln(3(√3))−(π/(2(√3))))  Ω=−(π/(27))(−(√3)ln(27)−π)=−(π/(27))(π+(√3) ln(27))
letx3=tdx=t213dt3Ω=1301ln(t13)(1t)13.t213dt3Ω=1901(1t)13t213ln(t)dtln(t)=axax=0Ω=a1901(1t)13t23+adt9Ω=aβ(23,13+a)a=0yβ(x,y)=β(x,y)[Ψ(y)Ψ(x+y)]βa=β(23,13+a)[Ψ(13+a)Ψ(1+a)]9Ω=β(13,23)[Ψ(13)Ψ(1)]GaussetheoremΨ(pq)=γln(2q)π2cot(pπq)+2[q12]n=1cos(2πnpq)ln(sin(nπq))Ψ(13)=γln(6)π2.13ln(32)=γln(33)π23Ψ(1)=γβ(13,23)=Γ(13)Γ(23)Γ(2)=.Γ(13)Γ(23)=πsin(π3)=2π39Ω=2π3(γln(33)π23+γ)=2π3(ln(33)π23)Ω=π27(3ln(27)π)=π27(π+3ln(27))
Commented by mnjuly1970 last updated on 03/Nov/20
thanks alot sir mindspower   peace  be upon you...
thanksalotsirmindspowerpeacebeuponyou
Commented by mindispower last updated on 03/Nov/20
withe  pleasur sir have a nice Day
withepleasursirhaveaniceDay

Leave a Reply

Your email address will not be published. Required fields are marked *