Question Number 117280 by mnjuly1970 last updated on 10/Oct/20
$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{calculus}…\: \\ $$$$ \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right).{cos}^{\mathrm{2}} \left(\pi{x}\right){dx} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{ln}\left(\mathrm{2}\pi\right)}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$\: \\ $$
Answered by AbduraufKodiriy last updated on 10/Oct/20
$$\int_{\boldsymbol{{a}}} ^{\:\boldsymbol{{b}}} \boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}=\int_{\boldsymbol{{a}}} ^{\:\boldsymbol{{b}}} \boldsymbol{{f}}\left(\boldsymbol{{a}}+\boldsymbol{{b}}−\boldsymbol{{x}}\right)\boldsymbol{{dx}} \\ $$$$\boldsymbol{{I}}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \boldsymbol{{ln}}\left(\boldsymbol{\Gamma}\left(\boldsymbol{{x}}\right)\right)\boldsymbol{{cos}}^{\mathrm{2}} \left(\pi\boldsymbol{{x}}\right)\boldsymbol{{dx}}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \boldsymbol{{ln}}\left(\boldsymbol{\Gamma}\left(\mathrm{1}−\boldsymbol{{x}}\right)\right)\boldsymbol{{cos}}^{\mathrm{2}} \left(\pi\left(\mathrm{1}−\boldsymbol{{x}}\right)\right)\boldsymbol{{dx}}= \\ $$$$=\int_{\mathrm{0}} ^{\:\mathrm{1}} \boldsymbol{{ln}}\left(\boldsymbol{\Gamma}\left(\mathrm{1}−\boldsymbol{{x}}\right)\right)\boldsymbol{{cos}}^{\mathrm{2}} \left(\pi\boldsymbol{{x}}\right)\boldsymbol{{dx}} \\ $$$$\boldsymbol{{Therefore}}:\:\mathrm{2}\boldsymbol{{I}}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\boldsymbol{{ln}}\left(\boldsymbol{\Gamma}\left(\boldsymbol{{x}}\right)\right)+\boldsymbol{{ln}}\left(\boldsymbol{\Gamma}\left(\mathrm{1}−\boldsymbol{{x}}\right)\right)\right)\boldsymbol{{cos}}^{\mathrm{2}} \left(\pi\boldsymbol{{x}}\right)\boldsymbol{{dx}}\:\Rightarrow \\ $$$$\Rightarrow\:\boldsymbol{{I}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \boldsymbol{{ln}}\left(\boldsymbol{\Gamma}\left(\boldsymbol{{x}}\right)\boldsymbol{\Gamma}\left(\mathrm{1}−\boldsymbol{{x}}\right)\right)\boldsymbol{{cos}}^{\mathrm{2}} \left(\pi\boldsymbol{{x}}\right)\boldsymbol{{dx}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \boldsymbol{{ln}}\left(\frac{\pi}{\boldsymbol{{sin}}\left(\pi\boldsymbol{{x}}\right)}\right)\boldsymbol{{cos}}^{\mathrm{2}} \left(\pi\boldsymbol{{x}}\right)\boldsymbol{{dx}}= \\ $$$$=\frac{\boldsymbol{{ln}}\left(\pi\right)}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \boldsymbol{{cos}}^{\mathrm{2}} \left(\pi\boldsymbol{{x}}\right)\boldsymbol{{dx}}−\frac{\mathrm{1}}{\mathrm{2}}\int\boldsymbol{{cos}}^{\mathrm{2}} \left(\pi\boldsymbol{{x}}\right)\boldsymbol{{ln}}\left(\boldsymbol{{sin}}\left(\pi\boldsymbol{{x}}\right)\right)\boldsymbol{{dx}}; \\ $$$$\boldsymbol{{I}}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} \boldsymbol{{cos}}^{\mathrm{2}} \left(\pi\boldsymbol{{x}}\right)\boldsymbol{{ln}}\left(\boldsymbol{{sin}}\left(\pi\boldsymbol{{x}}\right)\right)\boldsymbol{{dx}}\:\Rightarrow\:\boldsymbol{{I}}=\frac{\boldsymbol{{ln}}\left(\pi\right)}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{I}}_{\mathrm{1}} \\ $$$$\boldsymbol{{I}}_{\mathrm{1}} =\begin{vmatrix}{\pi\boldsymbol{{x}}=\boldsymbol{{t}}\:\Rightarrow\:\boldsymbol{{x}}=\frac{\boldsymbol{{t}}}{\pi}}\\{\boldsymbol{{dx}}=\frac{\mathrm{1}}{\pi}\boldsymbol{{dt}}}\end{vmatrix}=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\:\pi} \boldsymbol{{cos}}^{\mathrm{2}} \left(\boldsymbol{{t}}\right)\boldsymbol{{ln}}\left(\boldsymbol{{sin}}\left(\boldsymbol{{t}}\right)\right)\boldsymbol{{dt}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{\mathrm{0}} ^{\:\pi} \boldsymbol{{ln}}\left(\boldsymbol{{sin}}\left(\boldsymbol{{t}}\right)\right)\boldsymbol{{dt}}+\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{\mathrm{0}} ^{\:\pi} \boldsymbol{{cos}}\left(\mathrm{2}\boldsymbol{{t}}\right)\boldsymbol{{ln}}\left(\boldsymbol{{sin}}\left(\boldsymbol{{t}}\right)\right)\boldsymbol{{dt}};\:\boldsymbol{{We}}\:\boldsymbol{{know}}:\:\int_{\mathrm{0}} ^{\:\pi} \boldsymbol{{ln}}\left(\boldsymbol{{sin}}\left(\boldsymbol{{t}}\right)\right)\boldsymbol{{dt}}=−\pi\boldsymbol{{ln}}\mathrm{2} \\ $$$$\boldsymbol{{I}}_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{ln}}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\pi} \boldsymbol{{cos}}\left(\mathrm{2}\boldsymbol{{t}}\right)\boldsymbol{{ln}}\left(\boldsymbol{{sin}}\left(\boldsymbol{{t}}\right)\right)\boldsymbol{{dt}}=−\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{ln}}\mathrm{2}+\left(\frac{\boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{t}}\right)\boldsymbol{{ln}}\left(\boldsymbol{{sin}}\left(\boldsymbol{{t}}\right)\right)}{\mathrm{4}\pi}−\frac{\boldsymbol{{t}}}{\mathrm{4}\pi}−\frac{\boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{t}}\right)}{\mathrm{8}\pi}\right)\mid_{\mathrm{0}} ^{\pi} = \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{ln}}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow\:\boldsymbol{{I}}=\frac{\boldsymbol{{ln}}\left(\pi\right)}{\mathrm{4}}+\frac{\boldsymbol{{ln}}\left(\mathrm{2}\right)}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}=\frac{\boldsymbol{{ln}}\left(\mathrm{2}\pi\right)}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}} \\ $$
Commented by AbduraufKodiriy last updated on 10/Oct/20
Commented by mnjuly1970 last updated on 10/Oct/20
$${than}\:{you}\:{mr}\:{abduraufk}.. \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 10/Oct/20
$${javob}={javab}={answer}… \\ $$
Commented by mnjuly1970 last updated on 10/Oct/20
$${mercey}\:{aghaye}\:{abduraufk} \\ $$