Menu Close

advanced-calculus-prove-that-0-pi-3-dx-cos-2-x-1-3-2-1-3-pi-3-




Question Number 130844 by mnjuly1970 last updated on 29/Jan/21
                 ...   advanced   calculus...      prove  that::      ∫_0 ^( (π/3)) (dx/( ((cos^2 (x)))^(1/3) )) =((2^(1/3) (√π))/( (√3)))
advancedcalculusprovethat::0π3dxcos2(x)3=213π3
Answered by Dwaipayan Shikari last updated on 29/Jan/21
∫_0 ^(π/3) (cosx)^(−(2/3)) dx=−∫_1 ^(1/2) t^(−(2/3)) (1−t^2 )^(−(1/2)) dt  =∫_0 ^1 t^(−(2/3)) (1−t^2 )^(−(1/2)) dt−∫_0 ^(1/2) t^(−(5/6)) (1−t^2 )^(−(1/2)) dt  =(1/2)∫_0 ^1 u^(−(5/6)) (1−u)^(−(1/2)) du−(1/2)∫_0 ^(1/( (√2))) u^(−(5/6)) (1−u)^(−(1/2)) du  =((Γ((( 1)/6))Γ((1/2)))/(2Γ((2/3))))−(1/2)Σ_(n=0) ^∞ ((((1/2))_n )/(n!))∫_0 ^(1/( (√2))) u^(n−(5/6)) du  =((Γ((5/6))(√π))/(2Γ((2/3))))−(3/( (2)^(1/3) )) _2 F_1 ((1/6),(1/2),(7/6),(1/4))
0π3(cosx)23dx=112t23(1t2)12dt=01t23(1t2)12dt012t56(1t2)12dt=1201u56(1u)12du12012u56(1u)12du=Γ(16)Γ(12)2Γ(23)12n=0(12)nn!012un56du=Γ(56)π2Γ(23)3232F1(16,12,76,14)

Leave a Reply

Your email address will not be published. Required fields are marked *