Question Number 130844 by mnjuly1970 last updated on 29/Jan/21
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\:\:{advanced}\:\:\:{calculus}… \\ $$$$\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{3}}} \frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{cos}^{\mathrm{2}} \left({x}\right)}}\:=\frac{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{3}}} \sqrt{\pi}}{\:\sqrt{\mathrm{3}}} \\ $$
Answered by Dwaipayan Shikari last updated on 29/Jan/21
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \left({cosx}\right)^{−\frac{\mathrm{2}}{\mathrm{3}}} {dx}=−\int_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {t}^{−\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{−\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {dt}−\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {t}^{−\frac{\mathrm{5}}{\mathrm{6}}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{−\frac{\mathrm{5}}{\mathrm{6}}} \left(\mathrm{1}−{u}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {du}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} {u}^{−\frac{\mathrm{5}}{\mathrm{6}}} \left(\mathrm{1}−{u}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {du} \\ $$$$=\frac{\Gamma\left(\frac{\:\mathrm{1}}{\mathrm{6}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)}−\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} }{{n}!}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} {u}^{{n}−\frac{\mathrm{5}}{\mathrm{6}}} {du} \\ $$$$=\frac{\Gamma\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\sqrt{\pi}}{\mathrm{2}\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)}−\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{6}},\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{7}}{\mathrm{6}},\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$