Menu Close

advanced-calculus-prove-that-0-pi-cos-tan-x-cot-x-dx-pi-e-2-




Question Number 129684 by mnjuly1970 last updated on 17/Jan/21
             ... advanced  calculus...    prove  that:    ∫_0 ^( π) cos(tan(x)−cot(x))dx=(π/e^2 )
advancedcalculusprovethat:0πcos(tan(x)cot(x))dx=πe2
Answered by mindispower last updated on 17/Jan/21
=2∫_0 ^(π/2) cos(tg(x)−cot(x))dx  =2∫_0 ^∞ ((cos(t−(1/t)))/(1+t^2 ))dt  =Re∫_(−∞) ^∞ (e^(i(t−(1/t))) /(1+t^2 ))  t=re^(iε) ,ε∈[0,π[  e^(i(re^(iε) −(e^(−iε) /r))) =e^(i(t−(1/t))) ,  e^i (re^(iε) −(e^(−iε) /r))→0,r→∞  wehn r→0  r→0^+   e^(i(re^(iε) +i((sin(ε)−cos(ε))/r))) →0  ⇒∫_(−∞) ^(+∞) (e^(i(t−(1/t))) /(1+t^2 ))dt=2iπ.(Res((e^(i(t−(1/t))) /(1+t^2 )),t=i)  =2iπRe((e^(i(i−(1/i))) /(2i)))=2iπ.((e^(−2) /(2i)))=(π/e^2 )  2∫_0 ^∞ ((cos(t−(1/t)))/(1+t^2 ))dt=Re((π/e^2 ))=(π/e^2 )
=20π2cos(tg(x)cot(x))dx=20cos(t1t)1+t2dt=Reei(t1t)1+t2t=reiϵ,ϵ[0,π[ei(reiϵeiϵr)=ei(t1t),ei(reiϵeiϵr)0,rwehnr0r0+ei(reiϵ+isin(ϵ)cos(ϵ)r)0+ei(t1t)1+t2dt=2iπ.(Res(ei(t1t)1+t2,t=i)=2iπRe(ei(i1i)2i)=2iπ.(e22i)=πe220cos(t1t)1+t2dt=Re(πe2)=πe2
Answered by mathmax by abdo last updated on 17/Jan/21
I=∫_0 ^(π/2)  cos(tanx−(1/(tanx)))dx +∫_(π/2) ^π  cos(tanx −(1/(tanx)))dx(→x=(π/2)+t)  =2∫_0 ^(π/2) cos(tanx−(1/(tanx)))dx =_(tanx=t)   2∫_0 ^∞  cos(t−(1/t))(dt/(t^2  +1))  =∫_(−∞) ^(+∞)  ((cos(t−(1/t)))/(t^2  +1))dt =Re(∫_(−∞) ^(+∞)  (e^(i(t−(1/t))) /(t^2  +1))dt) let  ϕ(z)=(e^(i(z−(1/z))) /(z^2  +1)) ⇒ϕ(z)=(e^(i(z−(1/z))) /((z−i)(z+i))) residus[theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) =2iπ×(e^(i(i−(1/i))) /(2i)) =π e^(−1−1)  =(π/e^2 ) ⇒  ★ I =(π/e^2 )★
I=0π2cos(tanx1tanx)dx+π2πcos(tanx1tanx)dx(x=π2+t)=20π2cos(tanx1tanx)dx=tanx=t20cos(t1t)dtt2+1=+cos(t1t)t2+1dt=Re(+ei(t1t)t2+1dt)letφ(z)=ei(z1z)z2+1φ(z)=ei(z1z)(zi)(z+i)residus[theoremgive+φ(z)dz=2iπRes(φ,i)=2iπ×ei(i1i)2i=πe11=πe2I=πe2
Answered by mnjuly1970 last updated on 20/Jan/21

Leave a Reply

Your email address will not be published. Required fields are marked *