Question Number 121674 by mnjuly1970 last updated on 10/Nov/20

Answered by mindispower last updated on 11/Nov/20
![Ω=∫_0 ^∞ ((sin^4 (x))/x^2 )ln(x)dx sin^4 (x)=(1/8)(cos(4x)−4cos(2x)+3) 8Ω=∫_0 ^∞ (cos(4x)−4cos(2x)+3).((ln(x)dx)/x^2 ) by part u=cos(4x)−4cos(2x)+3 dv=((ln(x))/x^2 ),v=−((ln(x))/x)−(1/x) 8Ω=[−(((ln(x)+1))/x)(cos(4x)−4cos(2x)+3)]_0 ^∞ +∫_0 ^∞ (((ln(x)+1))/x)(−4sin(4x)+8sin(2x))dx 8Ω=−4∫_0 ^∞ ((ln(x)+1)/x)(sin(4x)−2sin(2x))dx ⇔−2Ω={∫_0 ^∞ ((ln(x))/x)sin(4x)−2∫((ln(x))/x)sin(2x)}_(=W) +{∫_0 ^∞ ((sin(4x))/x)−2∫_0 ^∞ ((sin(2x))/x)dx}_(=V) a>0,∫_0 ^∞ ((sin(ax))/x)dx=∫_0 ^∞ ((sin(ax))/(ax))d(ax)=(π/2) V=(π/2)−2.(π/2)=−(π/2) ∫_0 ^∞ ((sin(ax))/x)ln(x)=f(a)=(∂/∂t)∫_0 ^∞ sin(ax)x^(t−1) dx∣_(t=0) f(t)=∫_0 ^∞ sin(ax)x^(t−1) dx=Im∫_0 ^∞ e^(iax) x^(t−1) dx iax=−z⇔Im∫_0 ^(i∞) e^(−z) .(((iz)/a))^t .(a/z).(dz/a) =Ima∫_0 ^(i∞) e^(i(π/2)t) ((z/a))^(t−1) e^(−z) dz =Im−(e^(i(π/2)t) /a^t )∫_0 ^∞ z^(t−1) e^(−z) dz =−((sin(((πt)/2))Γ(t))/a^t )=((−sin(((πt)/2))π)/(a^t Γ(1−t)sin(((πt)/2))))=−(π/(2cos((π/2)t)Γ(1−t)a^t )) f′(t)∣_(t=0) =(π/2)(−γ−ln(a)))=−(π/2)(γ+ln(a)) W=f(4)−2f(2)=−(π/2)(γ+ln(4))−2(−(π/2)(γ+ln(2)) =(π/2)γ −2Ω=W+V=(π/2)γ−(π/2)⇒Ω=−((πγ)/4)+(π/4)=(π/4)(1−γ)](https://www.tinkutara.com/question/Q121717.png)
Commented by mnjuly1970 last updated on 11/Nov/20

Commented by mindispower last updated on 11/Nov/20

Answered by mnjuly1970 last updated on 11/Nov/20

Answered by mnjuly1970 last updated on 11/Nov/20
