Menu Close

advanced-calculus-prove-that-0-sin-4-x-ln-x-x-2-dx-pi-4-1-euler-mascheroni-constant-m-n-july-1970-




Question Number 121674 by mnjuly1970 last updated on 10/Nov/20
         ...  advanced  calculus...      prove that :              Ω =∫_0 ^( ∞) ((sin^4 (x)ln(x))/x^2 )dx=(π/4)(1−γ)  γ:euler−mascheroni constant        m.n.july.1970
advancedcalculusprovethat:Ω=0sin4(x)ln(x)x2dx=π4(1γ)γ:eulermascheroniconstantm.n.july.1970
Answered by mindispower last updated on 11/Nov/20
Ω=∫_0 ^∞ ((sin^4 (x))/x^2 )ln(x)dx  sin^4 (x)=(1/8)(cos(4x)−4cos(2x)+3)  8Ω=∫_0 ^∞ (cos(4x)−4cos(2x)+3).((ln(x)dx)/x^2 )  by part u=cos(4x)−4cos(2x)+3  dv=((ln(x))/x^2 ),v=−((ln(x))/x)−(1/x)  8Ω=[−(((ln(x)+1))/x)(cos(4x)−4cos(2x)+3)]_0 ^∞   +∫_0 ^∞ (((ln(x)+1))/x)(−4sin(4x)+8sin(2x))dx  8Ω=−4∫_0 ^∞ ((ln(x)+1)/x)(sin(4x)−2sin(2x))dx  ⇔−2Ω={∫_0 ^∞ ((ln(x))/x)sin(4x)−2∫((ln(x))/x)sin(2x)}_(=W)   +{∫_0 ^∞ ((sin(4x))/x)−2∫_0 ^∞ ((sin(2x))/x)dx}_(=V)   a>0,∫_0 ^∞ ((sin(ax))/x)dx=∫_0 ^∞ ((sin(ax))/(ax))d(ax)=(π/2)  V=(π/2)−2.(π/2)=−(π/2)  ∫_0 ^∞ ((sin(ax))/x)ln(x)=f(a)=(∂/∂t)∫_0 ^∞ sin(ax)x^(t−1) dx∣_(t=0)   f(t)=∫_0 ^∞ sin(ax)x^(t−1) dx=Im∫_0 ^∞ e^(iax) x^(t−1) dx  iax=−z⇔Im∫_0 ^(i∞) e^(−z) .(((iz)/a))^t .(a/z).(dz/a)  =Ima∫_0 ^(i∞) e^(i(π/2)t) ((z/a))^(t−1) e^(−z) dz  =Im−(e^(i(π/2)t) /a^t )∫_0 ^∞ z^(t−1) e^(−z) dz  =−((sin(((πt)/2))Γ(t))/a^t )=((−sin(((πt)/2))π)/(a^t Γ(1−t)sin(((πt)/2))))=−(π/(2cos((π/2)t)Γ(1−t)a^t ))  f′(t)∣_(t=0) =(π/2)(−γ−ln(a)))=−(π/2)(γ+ln(a))  W=f(4)−2f(2)=−(π/2)(γ+ln(4))−2(−(π/2)(γ+ln(2))  =(π/2)γ  −2Ω=W+V=(π/2)γ−(π/2)⇒Ω=−((πγ)/4)+(π/4)=(π/4)(1−γ)
Ω=0sin4(x)x2ln(x)dxsin4(x)=18(cos(4x)4cos(2x)+3)8Ω=0(cos(4x)4cos(2x)+3).ln(x)dxx2bypartu=cos(4x)4cos(2x)+3dv=ln(x)x2,v=ln(x)x1x8Ω=[(ln(x)+1)x(cos(4x)4cos(2x)+3)]0+0(ln(x)+1)x(4sin(4x)+8sin(2x))dx8Ω=40ln(x)+1x(sin(4x)2sin(2x))dx2Ω={0ln(x)xsin(4x)2ln(x)xsin(2x)}=W+{0sin(4x)x20sin(2x)xdx}=Va>0,0sin(ax)xdx=0sin(ax)axd(ax)=π2V=π22.π2=π20sin(ax)xln(x)=f(a)=t0sin(ax)xt1dxt=0f(t)=0sin(ax)xt1dx=Im0eiaxxt1dxiax=zIm0iez.(iza)t.az.dza=Ima0ieiπ2t(za)t1ezdz=Imeiπ2tat0zt1ezdz=sin(πt2)Γ(t)at=sin(πt2)πatΓ(1t)sin(πt2)=π2cos(π2t)Γ(1t)atf(t)t=0=π2(γln(a)))=π2(γ+ln(a))W=f(4)2f(2)=π2(γ+ln(4))2(π2(γ+ln(2))=π2γ2Ω=W+V=π2γπ2Ω=πγ4+π4=π4(1γ)
Commented by mnjuly1970 last updated on 11/Nov/20
peace be upon you  mr power .thank you.
peacebeuponyoumrpower.thankyou.
Commented by mindispower last updated on 11/Nov/20
withe pleasur sir
withepleasursir
Answered by mnjuly1970 last updated on 11/Nov/20
Answered by mnjuly1970 last updated on 11/Nov/20

Leave a Reply

Your email address will not be published. Required fields are marked *