advanced-calculus-prove-that-n-1-1-n-2-2n-n-2-3-solution-n-1-1-n-2-2n-n-2-n-1-n-n-n-2-2n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 119442 by mnjuly1970 last updated on 24/Oct/20 …advancedcalculus…provethat:∑∞n=11n2(2nn)=???ζ(2)3solution::∑∞n=11n2∗(2n)!(n!)2=∑∞n=1n!∗n!n2∗(2n)!=∑∞n=1Γ(n)Γ(n+1)nΓ(2n+1)=∑∞n=1β(n,n+1)n=∑∞n=11n∫01xn−1(1−x)n=∫011xΣ(x−x2)nndx=−∫01ln(1−x+x2)xdx=−∫01ln(1+x3)−ln(1+x)xdx=∫01ln(1+x)xdx−∫01ln(1+x3)xdx=−li2(−1)−∫01∑n=1(−1)n+1x3nnxdx=π212+∑∞n=1(−1)nn∫01x3n−1dx=π212+13∑∞n=1(−1)nn2=π212−π236=π218=ζ(2)3✓✓m.n.july.1970.. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-53907Next Next post: a-angle-is-14-more-than-its-complement-then-its-measure- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.