Menu Close

advanced-calculus-prove-that-n-1-1-n-2-2n-n-2-3-solution-n-1-1-n-2-2n-n-2-n-1-n-n-n-2-2n-




Question Number 119442 by mnjuly1970 last updated on 24/Oct/20
        ... advanced  calculus...        prove  that : Σ_(n=1) ^∞ (1/(n^2  (((2n)),(n) ))) =^(???) ((ζ(2))/3)  solution::  Σ_(n=1) ^∞ (1/(n^2 ∗(((2n)!)/((n!)^2 ))))=Σ_(n=1) ^∞ ((n!∗n!)/(n^2 ∗(2n)!))        =Σ_(n=1) ^∞  ((Γ(n)Γ(n+1))/(nΓ(2n+1)))=Σ_(n=1) ^∞ ((β(n,n+1))/n)  =Σ_(n=1) ^∞ (1/n)∫_0 ^( 1) x^(n−1) (1−x)^n   =∫_0 ^( 1) (1/x)Σ(((x−x^2 )^n )/n)dx  =−∫_0 ^( 1) ((ln(1−x+x^2 ))/x)dx    =−∫_0 ^( 1) ((ln(1+x^3 )−ln(1+x))/x)dx    =∫_0 ^( 1) ((ln(1+x))/x)dx −∫_0 ^( 1) ((ln(1+x^3 ))/x)dx   =−li_2 (−1) −∫_0 ^( 1) ((Σ_(n=1) (((−1)^(n+1) x^(3n) )/n))/x) dx  =(π^2 /(12))+Σ_(n=1) ^∞ (((−1)^n )/n)∫_0 ^( 1) x^(3n−1) dx          =(π^2 /(12)) +(1/3)Σ_(n=1) ^∞ (((−1)^n )/n^2 ) =(π^2 /(12))−(π^2 /(36))  =(π^2 /(18)) =((ζ(2))/3)  ✓✓          m.n.july.1970..
advancedcalculusprovethat:n=11n2(2nn)=???ζ(2)3solution::n=11n2(2n)!(n!)2=n=1n!n!n2(2n)!=n=1Γ(n)Γ(n+1)nΓ(2n+1)=n=1β(n,n+1)n=n=11n01xn1(1x)n=011xΣ(xx2)nndx=01ln(1x+x2)xdx=01ln(1+x3)ln(1+x)xdx=01ln(1+x)xdx01ln(1+x3)xdx=li2(1)01n=1(1)n+1x3nnxdx=π212+n=1(1)nn01x3n1dx=π212+13n=1(1)nn2=π212π236=π218=ζ(2)3m.n.july.1970..

Leave a Reply

Your email address will not be published. Required fields are marked *