Menu Close

advanced-calculus-prove-that-n-1-1-n-H-n-n-2-0-1-ln-1-x-ln-1-x-x-dx-note-H-n-k-1-n-1-k-therefore-n-1-




Question Number 118924 by mnjuly1970 last updated on 21/Oct/20
         ... advanced calculus...      prove that ::                Σ_(n=1) ^∞ (((−1)^n H_n )/n^2 ) =∫_0 ^( 1) ((ln(1−x)ln(1+x)  )/x)dx         note :: H_n =Σ_(k=1) ^n (1/k)         therefore: Σ_(n=1 ) ^∞ (((−1)^n H_n )/n^2 )=((−5)/8) ζ (3 ) ✓          ..m.n.july.1970...
advancedcalculusprovethat::n=1(1)nHnn2=01ln(1x)ln(1+x)xdxnote::Hn=nk=11ktherefore:n=1(1)nHnn2=58ζ(3)..m.n.july.1970
Answered by mindispower last updated on 21/Oct/20
∫_0 ^1 x^(n−1) ln(1−x)dx=−∫_0 ^1 x^(n−1) Σ_(k≥1) (x^k /k)dx  =−Σ_k (1/k)∫_0 ^1 x^(n+k−1) dx=−Σ_(k≥1) (1/((n+k)k))  =−Σ_(k≥1) (1/n)((1/k)−(1/(n+k)))=−(1/n)Σ_(k≤n) (1/k)=−(H_n /n)  ⇒∫_0 ^1 x^(n−1) ln(1−x)dx=−(H_n /n)  (1/n)∫x^(n−1) ln(1−x)dx=−(H_n /n^2 )  ⇒Σ(((−1)^(n−1) )/n)∫_0 ^1 x^(n−1) ln(1−x)dx=Σ_(n≥1) (((−1)^n H_n )/n^2 )  ⇒∫_0 ^1 ((1/x)Σ(((−1)^(n−1) x^n )/n))ln(1−x)dx=Σ_(n≥1) (((−1)^n H_n )/n^2 )  Σ_(n≥1) (((−1)^(n−1) x^n )/n)=ln(1+x)⇔  ∫_0 ^1 ((ln(1+x)ln(1−x))/x)dx=Σ(((−1)^n H_n )/n^2 )  ∫_0 ^1 ((ln(1+x)ln(1−x))/x)dx done in your answer
01xn1ln(1x)dx=01xn1k1xkkdx=k1k01xn+k1dx=k11(n+k)k=k11n(1k1n+k)=1nkn1k=Hnn01xn1ln(1x)dx=Hnn1nxn1ln(1x)dx=Hnn2Σ(1)n1n01xn1ln(1x)dx=n1(1)nHnn201(1xΣ(1)n1xnn)ln(1x)dx=n1(1)nHnn2n1(1)n1xnn=ln(1+x)01ln(1+x)ln(1x)xdx=Σ(1)nHnn201ln(1+x)ln(1x)xdxdoneinyouranswer
Commented by mnjuly1970 last updated on 21/Oct/20
bravo bravo  mr power    grateful sir...
bravobravomrpowergratefulsir
Commented by mindispower last updated on 21/Oct/20
withe pleasur
withepleasur

Leave a Reply

Your email address will not be published. Required fields are marked *