advanced-calculus-prove-that-n-1-1-n-H-n-n-2-0-1-ln-1-x-ln-1-x-x-dx-note-H-n-k-1-n-1-k-therefore-n-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 118924 by mnjuly1970 last updated on 21/Oct/20 …advancedcalculus…provethat::∑∞n=1(−1)nHnn2=∫01ln(1−x)ln(1+x)xdxnote::Hn=∑nk=11ktherefore:∑∞n=1(−1)nHnn2=−58ζ(3)✓..m.n.july.1970… Answered by mindispower last updated on 21/Oct/20 ∫01xn−1ln(1−x)dx=−∫01xn−1∑k⩾1xkkdx=−∑k1k∫01xn+k−1dx=−∑k⩾11(n+k)k=−∑k⩾11n(1k−1n+k)=−1n∑k⩽n1k=−Hnn⇒∫01xn−1ln(1−x)dx=−Hnn1n∫xn−1ln(1−x)dx=−Hnn2⇒Σ(−1)n−1n∫01xn−1ln(1−x)dx=∑n⩾1(−1)nHnn2⇒∫01(1xΣ(−1)n−1xnn)ln(1−x)dx=∑n⩾1(−1)nHnn2∑n⩾1(−1)n−1xnn=ln(1+x)⇔∫01ln(1+x)ln(1−x)xdx=Σ(−1)nHnn2∫01ln(1+x)ln(1−x)xdxdoneinyouranswer Commented by mnjuly1970 last updated on 21/Oct/20 bravobravomrpowergratefulsir… Commented by mindispower last updated on 21/Oct/20 withepleasur Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-184454Next Next post: Question-118927 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.