Menu Close

advanced-calculus-prove-that-n-1-2n-1-4-n-2n-1-ln-2-euler-mascheroni-constant-




Question Number 123764 by mnjuly1970 last updated on 28/Nov/20
            .... advanced  calculus ...         prove  that::::         Σ_(n=1) ^∞ {((ζ(2n+1))/(4^(n )  (2n+1)))}=ln(2)−γ          γ::  euler−mascheroni                              constant
.advancedcalculusprovethat::::n=1{ζ(2n+1)4n(2n+1)}=ln(2)γγ::eulermascheroniconstant
Answered by Dwaipayan Shikari last updated on 28/Nov/20
Σ_(n=1) ^∞ ((ζ(2n+1))/(4^n (2n+1)))  Σ_(n=1) ^∞ Σ_(k=1) ^∞ (1/(4^n (2n+1)k^((2n+1)) ))  Σ_(k=1) ^∞ Σ_(n≥1) ^∞ (1/(k(4k^2 )^n (2n+1)))  Σ_(k≥1) ^∞ Σ_(n≥1) ^∞ ∫_0 ^1 (x^(2n) /(k(4k^2 )^n ))dx  Σ_(k≥1) ^∞ ∫_0 ^1 Σ_(n≥1) ^∞ (x^(2n) /(k(4k^2 )^n ))dx=Σ_(k≥1) ^∞ ∫_0 ^1 (1/k).((x^2 /(4k^2 ))/(1−(x^2 /(4k^2 )))) dx  =Σ_(k≥1) ^∞ ∫_0 ^1 (1/k).(x^2 /(4k^2 −x^2 ))dx  (1/2)∫_0 ^1 x(Σ_(k≥1) ^∞ (1/k).(1/((2k−x)))−(1/k).(1/((2k+x)))) dx  =−(1/2)(∫_0 ^1 Σ_(k≥1) ^∞ (1/k)−(1/(2k−x))−∫_0 ^1 (1/(2k))−(1/(2k+x)))  =−(1/2)((∫_0 ^1 Σ^∞ (1/k)−(1/(k−(x/2)))+Σ^∞ (1/k)−(1/(k+(x/2))) ))dx  =−γ−(1/2)∫_0 ^1 ψ(−(x/2))+ψ((x/2))  =−γ−[log(Γ((x/2))−log(Γ(−(x/2)))]_0 ^1   =−γ+log(2)  =log(2)−γ
n=1ζ(2n+1)4n(2n+1)n=1k=114n(2n+1)k(2n+1)k=1n11k(4k2)n(2n+1)k1n101x2nk(4k2)ndxk101n1x2nk(4k2)ndx=k1011k.x24k21x24k2dx=k1011k.x24k2x2dx1201x(k11k.1(2kx)1k.1(2k+x))dx=12(01k11k12kx0112k12k+x)=12((011k1kx2+1k1k+x2))dx=γ1201ψ(x2)+ψ(x2)=γ[log(Γ(x2)log(Γ(x2))]01=γ+log(2)=log(2)γ
Commented by mnjuly1970 last updated on 28/Nov/20
God keep you  excellent mr payan...
Godkeepyouexcellentmrpayan

Leave a Reply

Your email address will not be published. Required fields are marked *