advanced-calculus-prove-that-n-1-2n-1-4-n-2n-1-ln-2-euler-mascheroni-constant- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 123764 by mnjuly1970 last updated on 28/Nov/20 ….advancedcalculus…provethat::::∑∞n=1{ζ(2n+1)4n(2n+1)}=ln(2)−γγ::euler−mascheroniconstant Answered by Dwaipayan Shikari last updated on 28/Nov/20 ∑∞n=1ζ(2n+1)4n(2n+1)∑∞n=1∑∞k=114n(2n+1)k(2n+1)∑∞k=1∑∞n⩾11k(4k2)n(2n+1)∑∞k⩾1∑∞n⩾1∫01x2nk(4k2)ndx∑∞k⩾1∫01∑∞n⩾1x2nk(4k2)ndx=∑∞k⩾1∫011k.x24k21−x24k2dx=∑∞k⩾1∫011k.x24k2−x2dx12∫01x(∑∞k⩾11k.1(2k−x)−1k.1(2k+x))dx=−12(∫01∑∞k⩾11k−12k−x−∫0112k−12k+x)=−12((∫01∑∞1k−1k−x2+∑∞1k−1k+x2))dx=−γ−12∫01ψ(−x2)+ψ(x2)=−γ−[log(Γ(x2)−log(Γ(−x2))]01=−γ+log(2)=log(2)−γ Commented by mnjuly1970 last updated on 28/Nov/20 Godkeepyouexcellentmrpayan… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Q-find-the-number-of-the-solutions-for-x-1-x-2-3-x-3-x-4-x-5-11-Hint-x-i-Z-0-Next Next post: Question-123769 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.