Menu Close

advanced-calculus-prove-that-n-1-H-n-n-4-3-5-2-3-where-H-n-1-1-2-1-3-1-n-




Question Number 126726 by mnjuly1970 last updated on 23/Dec/20
               ...advanced  calculus...    prove  that :          Σ_(n=1 ) ^∞ (H_n /n^4 ) =^? 3ζ(5)−ζ(2)(3)  ....     where::    H_(n )  =1+(1/2)+(1/3) +...+(1/n)                        ..........
advancedcalculusprovethat:n=1Hnn4=?3ζ(5)ζ(2)(3).where::Hn=1+12+13++1n.
Answered by mindispower last updated on 24/Dec/20
∫_0 ^1 x^(n−1) ln^3 (x)dx=−∫_0 ^∞ e^(−nt) t^3 dt=−(1/n^4 )∫_0 ^∞ t^3 e^(−t) dt  =−(1/n^4 ).Γ(4)=−(6/n^4 )⇒(1/n^4 )=−(1/6)∫_0 ^1 x^(n−1) ln^3 (x)dx  Σ_(n≥1) H_n x^n =−((ln(1−x))/(1−x))  Σ(H_n /n^4 )=ΣH_n .−(1/6)∫_0 ^1 x^(n−1) ln^3 (x)dx  =−(1/6)∫_0 ^1 ln^3 (x)Σ_(n≥1) H_n x^(n−1) dx  S=(1/6)∫_0 ^1 ((ln^3 (x)ln(1−x))/(x(1−x)))dx  β(a,b)=∫_0 ^1 x^(a−1) (1−x)^(b−1) dx  S=(1/6).lim_(a→0^+ ) .lim_(b→0^+ ) .((∂^3 /∂a^3 ).(∂/∂b^ )β(a,b))  =(1+(4/2))ζ(5)−(1/2)Σ_(k=1) ^2 ζ(k+1)ζ(4−k)  =3ζ(5)−(1/2)ζ(2)ζ3)−(1/2)ζ(3)ζ(2)=3ζ(5)−ζ(2)ζ(3)
01xn1ln3(x)dx=0entt3dt=1n40t3etdt=1n4.Γ(4)=6n41n4=1601xn1ln3(x)dxn1Hnxn=ln(1x)1xΣHnn4=ΣHn.1601xn1ln3(x)dx=1601ln3(x)n1Hnxn1dxS=1601ln3(x)ln(1x)x(1x)dxβ(a,b)=01xa1(1x)b1dxS=16.lima0+.limb0+.(3a3.bβ(a,b))=(1+42)ζ(5)122k=1ζ(k+1)ζ(4k)=3ζ(5)12ζ(2)ζ3)12ζ(3)ζ(2)=3ζ(5)ζ(2)ζ(3)
Commented by mnjuly1970 last updated on 24/Dec/20
very nice as always sir minds...
veryniceasalwayssirminds
Commented by mindispower last updated on 25/Dec/20
always pleasur
alwayspleasur

Leave a Reply

Your email address will not be published. Required fields are marked *