advanced-calculus-prove-that-n-1-H-n-n-4-3-5-2-3-where-H-n-1-1-2-1-3-1-n- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 126726 by mnjuly1970 last updated on 23/Dec/20 …advancedcalculus…provethat:∑∞n=1Hnn4=?3ζ(5)−ζ(2)(3)….where::Hn=1+12+13+…+1n………. Answered by mindispower last updated on 24/Dec/20 ∫01xn−1ln3(x)dx=−∫0∞e−ntt3dt=−1n4∫0∞t3e−tdt=−1n4.Γ(4)=−6n4⇒1n4=−16∫01xn−1ln3(x)dx∑n⩾1Hnxn=−ln(1−x)1−xΣHnn4=ΣHn.−16∫01xn−1ln3(x)dx=−16∫01ln3(x)∑n⩾1Hnxn−1dxS=16∫01ln3(x)ln(1−x)x(1−x)dxβ(a,b)=∫01xa−1(1−x)b−1dxS=16.lima→0+.limb→0+.(∂3∂a3.∂∂bβ(a,b))=(1+42)ζ(5)−12∑2k=1ζ(k+1)ζ(4−k)=3ζ(5)−12ζ(2)ζ3)−12ζ(3)ζ(2)=3ζ(5)−ζ(2)ζ(3) Commented by mnjuly1970 last updated on 24/Dec/20 veryniceasalwayssirminds… Commented by mindispower last updated on 25/Dec/20 alwayspleasur Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-126722Next Next post: f-x-1-1-x-is-derivable-on-0-k-find-the-value-of-k-max- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.