Menu Close

advanced-calculus-prove-that-n-2-1-1-n-4-cosh-2-pi-cos-2-pi-4pi-2-




Question Number 126440 by mnjuly1970 last updated on 20/Dec/20
                  ... advanced  calculus...      prove  that :::      Π_(n=2) ^∞ (1+(1/n^4 ) )=((cosh((√2) π)−cos((√2) π))/(4π^2 ))
advancedcalculusprovethat:::n=2(1+1n4)=cosh(2π)cos(2π)4π2
Answered by Dwaipayan Shikari last updated on 20/Dec/20
Π_(n=2) ^∞ (1+(i/n^2 ))Π_(n=2) ^∞ (1−(i/n^2 ))  =(1/((1−i^(3/2) )(1−(√i))))Π_(n=1) ^∞ (1−((((√i^3 ))^2 )/n^2 ))Π_(n=1) ^∞ (1−(((√i)/n))^2 )  =(1/(−(√i)(i+1))).((sin(i^(3/2) π))/(πi^(3/2) )).((sin((√i)π))/(π(√i)))  =(1/(4π^2 ))(cosh((√2)π)−cos((√2)π))    (After simplifying)
n=2(1+in2)n=2(1in2)=1(1i32)(1i)n=1(1(i3)2n2)n=1(1(in)2)=1i(i+1).sin(i32π)πi32.sin(iπ)πi=14π2(cosh(2π)cos(2π))(Aftersimplifying)
Commented by mnjuly1970 last updated on 20/Dec/20
thank you..
thankyou..
Answered by mathmax by abdo last updated on 21/Dec/20
((sinz)/z)=Π_(n=1) ^∞ (1−(z^2 /(n^2 π^2 ))) so  Π_(n=2) ^∞ (1+(1/n^4 ))=(1/2)Π_(n=1) ^∞ (1+(1/n^4 ))=(1/2)Π_(n=1) ^∞ (1+(i/n^2 ))(1−(i/n^2 ))  (z/π)=t ⇒((sin(πt))/(πt)) =Π_(n=1) ^∞ (1−(t^2 /n^2 )) ⇒Π_(n=1) ^∞ (1−(i/n^2 ))  =Π_(n=1) ^∞  (1−((((√i))^2 )/n^2 ))=((sin(π(√i)))/(π(√i))) also  Π_(n=1) ^∞ (1+(i/n^2 ))=Π_(n=1) ^∞ (1−((((√(−i)))^2 )/n^2 )) =((sin(π(√(−i))))/(π(√(−i)))) ⇒  Π_(n=2) ^∞ (1+(1/n^4 ))=(1/2)((sin(π(√i))sin(π(√(−i))))/(π^2 (√(−i^2 )))) =((sin(π(√i))sin(π(√(−i))))/(2π^2 ))  sin(π(√i)) =((e^(i(π(√i))) −e^(−i(π(√i))) )/(2i)) =(1/(2i)){ e^(i(π((1/( (√2)))+(i/( (√2))))) −e^(−iπ((1/( (√2)))+(i/( (√2))))) }  =(1/(2i))( e^(−(π/( (√2))))   (cos((π/( (√2))))+isin((π/( (√2))))−e^(π/( (√2)))   (cos((π/( (√2))))−isin((π/( (√2)))))  =(1/(2i))(cos((π/( (√2))))(e^(−(π/( (√2))))   −e^(π/( (√2))) ) +isin((π/( (√2))))(e^(−(π/( (√2))))   +e^(π/( (√2))) ))  =−cos((π/( (√2))))sh((π/( (√2)))) +sin((π/( (√2))))ch((π/( (√2))))  sin(π(√(−i))) =((e^(i(π(√(−i)))) −e^(−iπ(√(−i))) )/(2i)) =((e^(iπ((1/( (√2)))−(i/( (√2))))) −e^(−iπ((1/( (√2)))−(i/( (√2))))) )/(2i))  =((e^(π/( (√2)))  (cos((π/( (√2))))+isin((π/( (√2)))))−e^(−(π/( (√2)))) (cos((π/( (√2))))−isin((π/( (√2))))))/(2i))  =(1/(2i))   cos((π/( (√2))))(e^(π/( (√2)))   −e^(−(π/( (√2)))) )+sin((π/( (√2))))((e^(π/( (√2))) +e^(−(π/( (√2)))) )/2)  =cos((π/( (√2))))sh((π/( (√2))))+sin((π/( (√2))))ch((π/( (√2))))  rest to collect the calculus...
sinzz=n=1(1z2n2π2)son=2(1+1n4)=12n=1(1+1n4)=12n=1(1+in2)(1in2)zπ=tsin(πt)πt=n=1(1t2n2)n=1(1in2)=n=1(1(i)2n2)=sin(πi)πialson=1(1+in2)=n=1(1(i)2n2)=sin(πi)πin=2(1+1n4)=12sin(πi)sin(πi)π2i2=sin(πi)sin(πi)2π2sin(πi)=ei(πi)ei(πi)2i=12i{ei(π(12+i2)eiπ(12+i2)}=12i(eπ2(cos(π2)+isin(π2)eπ2(cos(π2)isin(π2))=12i(cos(π2)(eπ2eπ2)+isin(π2)(eπ2+eπ2))=cos(π2)sh(π2)+sin(π2)ch(π2)sin(πi)=ei(πi)eiπi2i=eiπ(12i2)eiπ(12i2)2i=eπ2(cos(π2)+isin(π2))eπ2(cos(π2)isin(π2))2i=12icos(π2)(eπ2eπ2)+sin(π2)eπ2+eπ22=cos(π2)sh(π2)+sin(π2)ch(π2)resttocollectthecalculus

Leave a Reply

Your email address will not be published. Required fields are marked *