Menu Close

advanced-calculus-prove-that-R-e-e-x-2x-x-2-dx-1-2-pi-2-6-6-




Question Number 130011 by mnjuly1970 last updated on 21/Jan/21
              ... advanced  calculus...     prove  that::    Φ=∫_(     R) e^((−e^x +2x)) x^2 dx=(1−γ)^2 +((π^2 −6)/6)
advancedcalculusprovethat::Φ=Re(ex+2x)x2dx=(1γ)2+π266
Answered by mindispower last updated on 21/Jan/21
not integrabl over R
notintegrabloverR
Commented by mnjuly1970 last updated on 21/Jan/21
thank you for your mention   i corrected it...
thankyouforyourmentionicorrectedit
Answered by mindispower last updated on 22/Jan/21
e^x =t  ⇔∫_0 ^∞ e^(−t) .t.(ln(t))^2 dt=Φ  Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt⇒Γ′′(x)=∫_0 ^∞ t^(x−1) e^(−t) ln^2 (t)dt  Φ=Γ′′(2)  Γ′(x)=Γ(x)Ψ(x)⇒Γ′′(x)=Γ(x)Ψ′(x)+Ψ^2 (x)  Φ=Γ(2)Ψ′(2)+Ψ(2)^2   =1.Σ_(n≥1) (1/((n+1)^2 ))+(Ψ(1)+1)^2   =ζ(2)−1+(1−γ)^2 =((π^2 −6)/6)+(1−γ)^2
ex=t0et.t.(ln(t))2dt=ΦΓ(x)=0tx1etdtΓ(x)=0tx1etln2(t)dtΦ=Γ(2)Γ(x)=Γ(x)Ψ(x)Γ(x)=Γ(x)Ψ(x)+Ψ2(x)Φ=Γ(2)Ψ(2)+Ψ(2)2=1.n11(n+1)2+(Ψ(1)+1)2=ζ(2)1+(1γ)2=π266+(1γ)2
Commented by mnjuly1970 last updated on 22/Jan/21
thanks alot sirpower   grateful...
thanksalotsirpowergrateful
Commented by mindispower last updated on 23/Jan/21
pleasur sir
pleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *