Menu Close

advanced-calculus-prove-that-Re-0-pi-2-sin-3-x-ln-ln-cos-x-dx-ln-3-2-3-




Question Number 122330 by mnjuly1970 last updated on 15/Nov/20
                ...advanced  calculus...    prove that :     Re(∫_0 ^( (π/2)) sin^3 (x)ln(ln(cos(x)))dx)         =^? ((ln(3)−2γ)/3) ✓
advancedcalculusprovethat:Re(0π2sin3(x)ln(ln(cos(x)))dx)=?ln(3)2γ3
Answered by mathmax by abdo last updated on 16/Nov/20
from where you get this sir mn...
fromwhereyougetthissirmn
Commented by mathmax by abdo last updated on 16/Nov/20
thank you sir
thankyousir
Commented by mnjuly1970 last updated on 16/Nov/20
hi mr max  from  App pimterest    and   brilliant  math in google...
himrmaxfromApppimterestandbrilliantmathingoogle
Answered by mindispower last updated on 16/Nov/20
let cos(x)=t⇒sin(x)dx=−dt  ∫_0 ^(π/2) sin^2 (x)ln(ln(cos(x)))sin(x)dx  =∫_0 ^1 (1−t^2 )ln(ln(t))dt  −ln(t)=u⇒dt=−e^(−u) du  Ω=∫_0 ^∞ (1−e^(−2u) )ln(−u)e^(−u) du  ln(−u)=ln(u)+iπ  Re(Ω)=∫_0 ^∞ e^(−u) ln(u)du−∫_0 ^∞ e^(−3u) ln(u)du...I  3u=y⇒du=(dy/3)  ⇔I=(2/3)∫_0 ^∞ e^(−u) ln(u)du+(1/3)∫_0 ^∞ e^(−y) ln(3)dy  Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt⇒Γ(1)=∫_0 ^∞ e^(−t) dt  Γ′(x)=∫_0 ^∞ ln(t)t^(x−1) ln(t)dt  Γ′(1)=∫_0 ^∞ ln(t)e^(−t) dt  Re(Ω)=(2/3)Γ′(1)+(1/3)Γ(1)  Γ′(1)=Ψ(1)=−γ  ⇔Re(Ω)=−(2/3)γ+(1/3)=((1−2γ)/3)
letcos(x)=tsin(x)dx=dt0π2sin2(x)ln(ln(cos(x)))sin(x)dx=01(1t2)ln(ln(t))dtln(t)=udt=euduΩ=0(1e2u)ln(u)euduln(u)=ln(u)+iπRe(Ω)=0euln(u)du0e3uln(u)duI3u=ydu=dy3I=230euln(u)du+130eyln(3)dyΓ(x)=0tx1etdtΓ(1)=0etdtΓ(x)=0ln(t)tx1ln(t)dtΓ(1)=0ln(t)etdtRe(Ω)=23Γ(1)+13Γ(1)Γ(1)=Ψ(1)=γRe(Ω)=23γ+13=12γ3
Commented by mnjuly1970 last updated on 16/Nov/20
thank you so much sir max
thankyousomuchsirmax
Commented by mnjuly1970 last updated on 16/Nov/20
grateful sir midspower.very nice  solution....
gratefulsirmidspower.verynicesolution.

Leave a Reply

Your email address will not be published. Required fields are marked *