Question Number 122330 by mnjuly1970 last updated on 15/Nov/20
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{advanced}\:\:{calculus}… \\ $$$$\:\:{prove}\:{that}\:: \\ $$$$\:\:\:\mathscr{R}{e}\left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{3}} \left({x}\right){ln}\left({ln}\left({cos}\left({x}\right)\right)\right){dx}\right) \\ $$$$\:\:\:\:\:\:\:\overset{?} {=}\frac{{ln}\left(\mathrm{3}\right)−\mathrm{2}\gamma}{\mathrm{3}}\:\checkmark \\ $$
Answered by mathmax by abdo last updated on 16/Nov/20
$$\mathrm{from}\:\mathrm{where}\:\mathrm{you}\:\mathrm{get}\:\mathrm{this}\:\mathrm{sir}\:\mathrm{mn}… \\ $$
Commented by mathmax by abdo last updated on 16/Nov/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by mnjuly1970 last updated on 16/Nov/20
$${hi}\:{mr}\:{max} \\ $$$${from} \\ $$$${App}\:{pimterest}\: \\ $$$$\:{and}\: \\ $$$${brilliant}\:\:{math}\:{in}\:{google}… \\ $$
Answered by mindispower last updated on 16/Nov/20
$${let}\:{cos}\left({x}\right)={t}\Rightarrow{sin}\left({x}\right){dx}=−{dt} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left({x}\right){ln}\left({ln}\left({cos}\left({x}\right)\right)\right){sin}\left({x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right){ln}\left({ln}\left({t}\right)\right){dt} \\ $$$$−{ln}\left({t}\right)={u}\Rightarrow{dt}=−{e}^{−{u}} {du} \\ $$$$\Omega=\int_{\mathrm{0}} ^{\infty} \left(\mathrm{1}−{e}^{−\mathrm{2}{u}} \right){ln}\left(−{u}\right){e}^{−{u}} {du} \\ $$$${ln}\left(−{u}\right)={ln}\left({u}\right)+{i}\pi \\ $$$${Re}\left(\Omega\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {ln}\left({u}\right){du}−\int_{\mathrm{0}} ^{\infty} {e}^{−\mathrm{3}{u}} {ln}\left({u}\right){du}…{I} \\ $$$$\mathrm{3}{u}={y}\Rightarrow{du}=\frac{{dy}}{\mathrm{3}} \\ $$$$\Leftrightarrow{I}=\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {ln}\left({u}\right){du}+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} {e}^{−{y}} {ln}\left(\mathrm{3}\right){dy} \\ $$$$\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\Rightarrow\Gamma\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {dt} \\ $$$$\Gamma'\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {ln}\left({t}\right){t}^{{x}−\mathrm{1}} {ln}\left({t}\right){dt} \\ $$$$\Gamma'\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} {ln}\left({t}\right){e}^{−{t}} {dt} \\ $$$${Re}\left(\Omega\right)=\frac{\mathrm{2}}{\mathrm{3}}\Gamma'\left(\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{3}}\Gamma\left(\mathrm{1}\right) \\ $$$$\Gamma'\left(\mathrm{1}\right)=\Psi\left(\mathrm{1}\right)=−\gamma \\ $$$$\Leftrightarrow{Re}\left(\Omega\right)=−\frac{\mathrm{2}}{\mathrm{3}}\gamma+\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{1}−\mathrm{2}\gamma}{\mathrm{3}} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 16/Nov/20
$${thank}\:{you}\:{so}\:{much}\:{sir}\:{max}\: \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 16/Nov/20
$${grateful}\:{sir}\:{midspower}.{very}\:{nice} \\ $$$${solution}…. \\ $$