Menu Close

advanced-integral-Evaluate-I-0-4xln-x-x-4-2x-2-4-dx-m-n-1970-




Question Number 117574 by mnjuly1970 last updated on 12/Oct/20
        ... advanced  integral...          Evaluate ::                          I := ∫_0 ^( ∞) (( 4xln(x))/(x^4 +2x^2 +4 ))dx =??        ... m.n.1970..
advancedintegralEvaluate::I:=04xln(x)x4+2x2+4dx=??m.n.1970..
Answered by mindispower last updated on 12/Oct/20
x^2 =t⇒  I=∫_0 ^∞ ((ln(t))/(t^2 +2t+4))  t⇒2s⇒∫_0 ^∞ ((ln(2s).2ds)/(4(s^2 +s+1)))=∫_0 ^∞ ((ln(2)ds)/(2(s^2 +s+1)=I))+(1/2)∫_0 ^∞ ((ln(x))/(x^2 +x+1=J))  firstI basic  J =(1/2)∫_0 ^1 ((ln(x))/(x^2 +x+1))dx+(1/2)∫_1 ^∞ ((ln(x))/(x^2 +x+1))dx  x=(1/t) in 2nd ⇒dx=((−dt)/t^2 )  =(1/2)∫_1 ^0 ((ln(t))/(1+t+t^2 ))=−(1/2)∫_0 ^1 ((ln(x))/(1+x+x^2 ))  ⇒we have juste tofind  ∫_0 ^∞ ((ln(2)dx)/(x^2 +x+1)).(1/2)=((ln(2))/2)∫_0 ^∞ (dx/((x+(1/2))^2 +(3/4)))  =((2ln(2))/3)∫_0 ^∞  (dx/((((2x)/( (√3)))+(1/( (√3))))))=((ln(2))/( (√3)))[arctan(((2x)/( (√3)))+(1/( (√3))))]_0 ^∞   =((ln(2))/( (√3)))[(π/2)−(π/6)]=((πln(2))/( 3(√3)))
x2=tI=0ln(t)t2+2t+4t2s0ln(2s).2ds4(s2+s+1)=0ln(2)ds2(s2+s+1)=I+120ln(x)x2+x+1=JfirstIbasicJ=1201ln(x)x2+x+1dx+121ln(x)x2+x+1dxx=1tin2nddx=dtt2=1210ln(t)1+t+t2=1201ln(x)1+x+x2wehavejustetofind0ln(2)dxx2+x+1.12=ln(2)20dx(x+12)2+34=2ln(2)30dx(2x3+13)=ln(2)3[arctan(2x3+13)]0=ln(2)3[π2π6]=πln(2)33
Commented by mnjuly1970 last updated on 12/Oct/20
tayeballah  thank you so  much...
tayeballahthankyousomuch
Commented by mindispower last updated on 14/Oct/20
withe?pleasur
withe?pleasur

Leave a Reply

Your email address will not be published. Required fields are marked *