Menu Close

advanced-integral-i-0-1-1-ln-x-1-1-x-dx-ii-x-0-e-t-t-e-tx-1-e-t-dt-solution-2-ln-n-easy-0-1-x-n-




Question Number 122625 by mnjuly1970 last updated on 18/Nov/20
         ... advanced  integral...       i:  ∫_0 ^( 1) ((1/(ln(x)))+(1/(1−x)))dx=γ        ii: ψ(x)=∫_0 ^( ∞) ((e^(−t) /t) −(e^(−tx) /(1−e^(−t) )))dt      solution :{_(2 : ln(n) =^(easy) ∫_0 ^( 1) ((x^(n−1) −1)/(ln(x)))dx   (∗∗)) ^(1:  H_n  = Σ_(k=1) ^n (1/k) =∫_0 ^( 1) ((1−x^n )/(1−x)) dx  (∗))     (∗)−(∗∗):  H_n −ln(n)=∫_0 ^1 (((1−x^n )/(1−x)) −((x^(n−1) −1)/(ln(x))))dx       lim_(n→∞) (x^n )=^(0<x<1) 0    lim_(n→∞) (H_n −ln(n))=∫_0 ^( 1) ((1/(1n(x)))+(1/(1−x)))dx    γ= ∫_0 ^( 1) ((1/(ln(x)))+(1/(1−x)))dx  ✓  .............................      ψ(x)=^(easy) −γ+∫_0 ^( 1) ((1−t^(x−1) )/(1−t))dt        ψ(x)=−∫_0 ^( 1) (1/(ln(t)))+(1/(1−t))dt+∫_0 ^( 1) ((1−t^(x−1) )/(1−t))dt              =∫_0 ^( 1) −(1/(ln(t))) +((1−t^(x−1) −1)/(1−t))dt       =−∫_0 ^( 1) (1/(ln(t)))+(t^(x−1) /(1−t)) dt=^(t=e^(−y) )        =−∫_∞ ^( 0) ((1/(−y))+(e^(−yx+y) /(1−e^(−y) )))(−e^(−y) )dy      =∫_0 ^( ∞) (e^(−y) /y)−(e^(−yx) /(1−e^(−y) ))dy   ∵ ψ(x)=∫_0 ^( ∞) ((e^(−y) /y)−(e^(−yx) /(1−e^(−y) )))dy ✓
advancedintegrali:01(1ln(x)+11x)dx=γii:ψ(x)=0(ettetx1et)dtsolution:{2:ln(n)=easy01xn11ln(x)dx()1:Hn=nk=11k=011xn1xdx()()():Hnln(n)=01(1xn1xxn11ln(x))dxlimn(xn)=0<x<10limn(Hnln(n))=01(11n(x)+11x)dxγ=01(1ln(x)+11x)dx..ψ(x)=easyγ+011tx11tdtψ(x)=011ln(t)+11tdt+011tx11tdt=011ln(t)+1tx111tdt=011ln(t)+tx11tdt=t=ey=0(1y+eyx+y1ey)(ey)dy=0eyyeyx1eydyψ(x)=0(eyyeyx1ey)dy

Leave a Reply

Your email address will not be published. Required fields are marked *