Question Number 122625 by mnjuly1970 last updated on 18/Nov/20
$$\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{integral}… \\ $$$$\:\:\:\:\:{i}:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\mathrm{1}}{{ln}\left({x}\right)}+\frac{\mathrm{1}}{\mathrm{1}−{x}}\right){dx}=\gamma \\ $$$$\:\:\:\:\:\:{ii}:\:\psi\left({x}\right)=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{e}^{−{t}} }{{t}}\:−\frac{{e}^{−{tx}} }{\mathrm{1}−{e}^{−{t}} }\right){dt} \\ $$$$\:\:\:\:{solution}\::\left\{_{\mathrm{2}\::\:{ln}\left({n}\right)\:\overset{{easy}} {=}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{{n}−\mathrm{1}} −\mathrm{1}}{{ln}\left({x}\right)}{dx}\:\:\:\left(\ast\ast\right)} ^{\mathrm{1}:\:\:{H}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}^{{n}} }{\mathrm{1}−{x}}\:{dx}\:\:\left(\ast\right)} \right. \\ $$$$\:\:\left(\ast\right)−\left(\ast\ast\right):\:\:{H}_{{n}} −{ln}\left({n}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}−{x}^{{n}} }{\mathrm{1}−{x}}\:−\frac{{x}^{{n}−\mathrm{1}} −\mathrm{1}}{{ln}\left({x}\right)}\right){dx} \\ $$$$\:\:\:\:\:{lim}_{{n}\rightarrow\infty} \left({x}^{{n}} \right)\overset{\mathrm{0}<{x}<\mathrm{1}} {=}\mathrm{0} \\ $$$$\:\:{lim}_{{n}\rightarrow\infty} \left({H}_{{n}} −{ln}\left({n}\right)\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}{n}\left({x}\right)}+\frac{\mathrm{1}}{\mathrm{1}−{x}}\right){dx} \\ $$$$\:\:\gamma=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\mathrm{1}}{{ln}\left({x}\right)}+\frac{\mathrm{1}}{\mathrm{1}−{x}}\right){dx}\:\:\checkmark \\ $$$$……………………….. \\ $$$$\:\:\:\:\psi\left({x}\right)\overset{{easy}} {=}−\gamma+\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{t}^{{x}−\mathrm{1}} }{\mathrm{1}−{t}}{dt} \\ $$$$\:\:\:\:\:\:\psi\left({x}\right)=−\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{{ln}\left({t}\right)}+\frac{\mathrm{1}}{\mathrm{1}−{t}}{dt}+\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{t}^{{x}−\mathrm{1}} }{\mathrm{1}−{t}}{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} −\frac{\mathrm{1}}{{ln}\left({t}\right)}\:+\frac{\mathrm{1}−{t}^{{x}−\mathrm{1}} −\mathrm{1}}{\mathrm{1}−{t}}{dt}\: \\ $$$$\:\:\:\:=−\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{{ln}\left({t}\right)}+\frac{{t}^{{x}−\mathrm{1}} }{\mathrm{1}−{t}}\:{dt}\overset{{t}={e}^{−{y}} } {=} \\ $$$$\:\:\:\:\:=−\int_{\infty} ^{\:\mathrm{0}} \left(\frac{\mathrm{1}}{−{y}}+\frac{{e}^{−{yx}+{y}} }{\mathrm{1}−{e}^{−{y}} }\right)\left(−{e}^{−{y}} \right){dy} \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\:\infty} \frac{{e}^{−{y}} }{{y}}−\frac{{e}^{−{yx}} }{\mathrm{1}−{e}^{−{y}} }{dy}\: \\ $$$$\because\:\psi\left({x}\right)=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{e}^{−{y}} }{{y}}−\frac{{e}^{−{yx}} }{\mathrm{1}−{e}^{−{y}} }\right){dy}\:\checkmark \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$$$ \\ $$