advanced-integral-i-0-1-1-ln-x-1-1-x-dx-ii-x-0-e-t-t-e-tx-1-e-t-dt-solution-2-ln-n-easy-0-1-x-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 122625 by mnjuly1970 last updated on 18/Nov/20 …advancedintegral…i:∫01(1ln(x)+11−x)dx=γii:ψ(x)=∫0∞(e−tt−e−tx1−e−t)dtsolution:{2:ln(n)=easy∫01xn−1−1ln(x)dx(∗∗)1:Hn=∑nk=11k=∫011−xn1−xdx(∗)(∗)−(∗∗):Hn−ln(n)=∫01(1−xn1−x−xn−1−1ln(x))dxlimn→∞(xn)=0<x<10limn→∞(Hn−ln(n))=∫01(11n(x)+11−x)dxγ=∫01(1ln(x)+11−x)dx✓………………………..ψ(x)=easy−γ+∫011−tx−11−tdtψ(x)=−∫011ln(t)+11−tdt+∫011−tx−11−tdt=∫01−1ln(t)+1−tx−1−11−tdt=−∫011ln(t)+tx−11−tdt=t=e−y=−∫∞0(1−y+e−yx+y1−e−y)(−e−y)dy=∫0∞e−yy−e−yx1−e−ydy∵ψ(x)=∫0∞(e−yy−e−yx1−e−y)dy✓ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-the-limits-at-0-0-of-the-following-functions-1-f-x-y-x-2-y-2-x-2-y-2-2-f-x-y-xy-x-2-y-2-3-f-x-y-xy-x-y-4-f-x-y-x-2-y-2-x-2-y-2-5-fNext Next post: Prove-the-equality-n-k-0-n-1-k-n-k-n-k-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.