Menu Close

advanced-integral-prove-that-0-sin-2-x-x-2-1-x-2-dx-pi-4-1-pi-e-2-




Question Number 123900 by mnjuly1970 last updated on 29/Nov/20
         ... advanced  integral...     prove  that ::        Ω=∫_0 ^( ∞) ((sin^2 (x))/(x^2 (1+x^2 )))dx =(π/4)(1+(π/e^2 ))
advancedintegralprovethat::Ω=0sin2(x)x2(1+x2)dx=π4(1+πe2)
Answered by mathmax by abdo last updated on 29/Nov/20
I=∫_0 ^∞  ((sin^2 x)/(x^2 (1+x^2 )))dx ⇒I =∫_0 ^∞ ((1/x^2 )−(1/(1+x^2 )))sin^2 x dx  =∫_0 ^∞  ((sin^2 x)/x^2 )−∫_0 ^∞  ((sin^2 x)/(x^2  +1))dx  we have by[psrts  ∫_0 ^∞  ((sin^2 x)/x^2 )dx =[−((sin^2 x)/x)]_0 ^∞ +∫_0 ^∞ ((2sinx cosx)/x)dx  =∫_0 ^∞  ((sin(2x))/x)dx =_(2x=t)    ∫_0 ^∞  ((sin(t))/(t/2))(dt/2)=∫_0 ^∞  ((sint)/t)dt=(π/2)  ∫_0 ^∞  ((sin^2 x)/(x^2  +1))dx =∫_0 ^∞ ((1−cos(2x))/(2(x^2  +1)))dx =(1/2)∫_0 ^∞ (dx/(x^2  +1))−(1/2)∫_0 ^∞ ((cos(2x))/(x^2  +1))dx  =(π/4)−(1/2)∫_0 ^∞  ((cos(2x))/(x^2  +1))dx  we have  ∫_0 ^∞  ((cos(2x))/(x^2  +1))dx =(1/2)Re(∫_(−∞) ^(+∞)  (e^(2ix) /(x^2 +1))dx)  ∫_(−∞) ^(+∞)  (e^(2ix) /(x^2 +1))dx =2iπ×(e^(−2) /(2i)) =(π/e^2 ) ⇒∫_0 ^∞  ((cos(2x))/(x^2  +1))dx=(π/(2e^2 )) ⇒  I =(π/2)−(π/4) +(1/2).(π/(2e^2 )) =(π/4)+(π/(4e^2 )) =(π/4)(1+(1/e^2 ))
I=0sin2xx2(1+x2)dxI=0(1x211+x2)sin2xdx=0sin2xx20sin2xx2+1dxwehaveby[psrts0sin2xx2dx=[sin2xx]0+02sinxcosxxdx=0sin(2x)xdx=2x=t0sin(t)t2dt2=0sinttdt=π20sin2xx2+1dx=01cos(2x)2(x2+1)dx=120dxx2+1120cos(2x)x2+1dx=π4120cos(2x)x2+1dxwehave0cos(2x)x2+1dx=12Re(+e2ixx2+1dx)+e2ixx2+1dx=2iπ×e22i=πe20cos(2x)x2+1dx=π2e2I=π2π4+12.π2e2=π4+π4e2=π4(1+1e2)
Commented by mnjuly1970 last updated on 29/Nov/20
grateful my master sir max
gratefulmymastersirmax
Commented by mathmax by abdo last updated on 29/Nov/20
you are welcome sir
youarewelcomesir
Answered by mindispower last updated on 29/Nov/20
Ω=∫_0 ^∞ (((1+x^2 −x^2 )sin^2 (x)dx)/(x^2 (1+x^2 )))  ∫((sin^2 (x))/x^2 )−∫_0 ^∞ ((sin^2 (x))/(1+x^2 ))dx  sin^2 (x)=((1−cos(2x))/2)  Ω=∫((sin^2 (x))/x_(=A) ^2 )−∫(dx/(2(1+x^2 )))+(1/2)∫_0 ^∞ ((cos(2x))/(1+x^2 ))dx  A by part  [−((sin^2 (x))/x)]_0 ^∞ +∫_0 ^∞ ((sin(2x))/x)dx  =∫_0 ^∞ 2.sin(2x).(dx/(2x))=∫_0 ^∞ ((sin(t))/t)dt=(π/2)  ∫_0 ^∞ (dx/(2(1+x^2 )))=(1/2)arctan(x)]_0 ^∞ =(π/4)  Ω=(π/2)−(π/4)+(1/2)∫((cos(2x))/(1+x^2 ))dx(π/4)+(1/2)B  B=(1/2)∫_(−∞) ^∞ ((cos(2x))/(1+x^2 ))dx=(1/2)Re∫_(−∞) ^∞ (e^(2ix) /(1+x^2 ))dx  =(1/2).2iπRes((e^(2ix) /(1+x^2 )),x=i{  =iπ(e^(−2) /(2i))=(π/e^2 )  Ω=(π/4)+.(1/2)(π/(2e^2 ))=(π/4)(1+(1/e^2 ))
Ω=0(1+x2x2)sin2(x)dxx2(1+x2)sin2(x)x20sin2(x)1+x2dxsin2(x)=1cos(2x)2Ω=sin2(x)x=A2dx2(1+x2)+120cos(2x)1+x2dxAbypart[sin2(x)x]0+0sin(2x)xdx=02.sin(2x).dx2x=0sin(t)tdt=π20dx2(1+x2)=12arctan(x)]0=π4Ω=π2π4+12cos(2x)1+x2dxπ4+12BB=12cos(2x)1+x2dx=12Ree2ix1+x2dx=12.2iπRes(e2ix1+x2,x=i{=iπe22i=πe2Ω=π4+.12π2e2=π4(1+1e2)
Commented by mnjuly1970 last updated on 29/Nov/20
thanks alot sir mindspower   nice  as always...
thanksalotsirmindspowerniceasalways
Commented by mindispower last updated on 29/Nov/20
withe pleasur   sad not times too do maths these days
withepleasursadnottimestoodomathsthesedays
Commented by mnjuly1970 last updated on 29/Nov/20
i hope you are successful  in all stages of your life   god  keep  you..
ihopeyouaresuccessfulinallstagesofyourlifegodkeepyou..

Leave a Reply

Your email address will not be published. Required fields are marked *