Question Number 123900 by mnjuly1970 last updated on 29/Nov/20

Answered by mathmax by abdo last updated on 29/Nov/20
![I=∫_0 ^∞ ((sin^2 x)/(x^2 (1+x^2 )))dx ⇒I =∫_0 ^∞ ((1/x^2 )−(1/(1+x^2 )))sin^2 x dx =∫_0 ^∞ ((sin^2 x)/x^2 )−∫_0 ^∞ ((sin^2 x)/(x^2 +1))dx we have by[psrts ∫_0 ^∞ ((sin^2 x)/x^2 )dx =[−((sin^2 x)/x)]_0 ^∞ +∫_0 ^∞ ((2sinx cosx)/x)dx =∫_0 ^∞ ((sin(2x))/x)dx =_(2x=t) ∫_0 ^∞ ((sin(t))/(t/2))(dt/2)=∫_0 ^∞ ((sint)/t)dt=(π/2) ∫_0 ^∞ ((sin^2 x)/(x^2 +1))dx =∫_0 ^∞ ((1−cos(2x))/(2(x^2 +1)))dx =(1/2)∫_0 ^∞ (dx/(x^2 +1))−(1/2)∫_0 ^∞ ((cos(2x))/(x^2 +1))dx =(π/4)−(1/2)∫_0 ^∞ ((cos(2x))/(x^2 +1))dx we have ∫_0 ^∞ ((cos(2x))/(x^2 +1))dx =(1/2)Re(∫_(−∞) ^(+∞) (e^(2ix) /(x^2 +1))dx) ∫_(−∞) ^(+∞) (e^(2ix) /(x^2 +1))dx =2iπ×(e^(−2) /(2i)) =(π/e^2 ) ⇒∫_0 ^∞ ((cos(2x))/(x^2 +1))dx=(π/(2e^2 )) ⇒ I =(π/2)−(π/4) +(1/2).(π/(2e^2 )) =(π/4)+(π/(4e^2 )) =(π/4)(1+(1/e^2 ))](https://www.tinkutara.com/question/Q123916.png)
Commented by mnjuly1970 last updated on 29/Nov/20

Commented by mathmax by abdo last updated on 29/Nov/20

Answered by mindispower last updated on 29/Nov/20
![Ω=∫_0 ^∞ (((1+x^2 −x^2 )sin^2 (x)dx)/(x^2 (1+x^2 ))) ∫((sin^2 (x))/x^2 )−∫_0 ^∞ ((sin^2 (x))/(1+x^2 ))dx sin^2 (x)=((1−cos(2x))/2) Ω=∫((sin^2 (x))/x_(=A) ^2 )−∫(dx/(2(1+x^2 )))+(1/2)∫_0 ^∞ ((cos(2x))/(1+x^2 ))dx A by part [−((sin^2 (x))/x)]_0 ^∞ +∫_0 ^∞ ((sin(2x))/x)dx =∫_0 ^∞ 2.sin(2x).(dx/(2x))=∫_0 ^∞ ((sin(t))/t)dt=(π/2) ∫_0 ^∞ (dx/(2(1+x^2 )))=(1/2)arctan(x)]_0 ^∞ =(π/4) Ω=(π/2)−(π/4)+(1/2)∫((cos(2x))/(1+x^2 ))dx(π/4)+(1/2)B B=(1/2)∫_(−∞) ^∞ ((cos(2x))/(1+x^2 ))dx=(1/2)Re∫_(−∞) ^∞ (e^(2ix) /(1+x^2 ))dx =(1/2).2iπRes((e^(2ix) /(1+x^2 )),x=i{ =iπ(e^(−2) /(2i))=(π/e^2 ) Ω=(π/4)+.(1/2)(π/(2e^2 ))=(π/4)(1+(1/e^2 ))](https://www.tinkutara.com/question/Q123905.png)
Commented by mnjuly1970 last updated on 29/Nov/20

Commented by mindispower last updated on 29/Nov/20

Commented by mnjuly1970 last updated on 29/Nov/20
