Menu Close

advanced-mathematcs-prove-that-n-1-1-n-1-n-2-csch-pi-1-2-




Question Number 130889 by mnjuly1970 last updated on 30/Jan/21
              ...   advanced  mathematcs  ...   prove that::      Σ_(n=1) ^∞ (((−1)^n )/(1+n^2 )) =((csch(π)−1)/2)
advancedmathematcsprovethat::n=1(1)n1+n2=csch(π)12
Answered by mindispower last updated on 30/Jan/21
let f(z)=(π/(sin(πz)(1+z^2 ))),pol =Z∪{i,−i}  ∫_C f(z)dz=0  Res(f,k)=(1/((−1)^k (1+k^2 ))),∀k∈Z  Res(f,i)=(π/(2isin(iπ)))=(π/(−2sh(π)))  Res(f,−i)=(π/(−sh(π)))  ⇒Σ_(n∈Z) (((−1)^n )/(1+n^2 ))−(π/(sh(π)))=0  ⇒2Σ_(n≥1) (((−1)^n )/(1+n^2 ))+1−(π/(sh(π)))=0  Σ_(n≥1) (((−1)^n )/(1+n^2 ))=(π/(2sh(π)))−(1/2)=((πscch(π)−1)/2)
letf(z)=πsin(πz)(1+z2),pol=Z{i,i}Cf(z)dz=0Res(f,k)=1(1)k(1+k2),kZRes(f,i)=π2isin(iπ)=π2sh(π)Res(f,i)=πsh(π)nZ(1)n1+n2πsh(π)=02n1(1)n1+n2+1πsh(π)=0n1(1)n1+n2=π2sh(π)12=πscch(π)12
Commented by mnjuly1970 last updated on 30/Jan/21
tayeballah mr power..  thank you...
tayeballahmrpower..thankyou
Commented by mindispower last updated on 30/Jan/21
withe pleasur god bless you
withepleasurgodblessyou

Leave a Reply

Your email address will not be published. Required fields are marked *