Menu Close

advanced-mathematcs-prove-that-n-1-1-n-1-n-2-csch-pi-1-2-




Question Number 130889 by mnjuly1970 last updated on 30/Jan/21
              ...   advanced  mathematcs  ...   prove that::      Σ_(n=1) ^∞ (((−1)^n )/(1+n^2 )) =((csch(π)−1)/2)
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\:\:{advanced}\:\:{mathematcs}\:\:… \\ $$$$\:{prove}\:{that}:: \\ $$$$\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{1}+{n}^{\mathrm{2}} }\:=\frac{{csch}\left(\pi\right)−\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$
Answered by mindispower last updated on 30/Jan/21
let f(z)=(π/(sin(πz)(1+z^2 ))),pol =Z∪{i,−i}  ∫_C f(z)dz=0  Res(f,k)=(1/((−1)^k (1+k^2 ))),∀k∈Z  Res(f,i)=(π/(2isin(iπ)))=(π/(−2sh(π)))  Res(f,−i)=(π/(−sh(π)))  ⇒Σ_(n∈Z) (((−1)^n )/(1+n^2 ))−(π/(sh(π)))=0  ⇒2Σ_(n≥1) (((−1)^n )/(1+n^2 ))+1−(π/(sh(π)))=0  Σ_(n≥1) (((−1)^n )/(1+n^2 ))=(π/(2sh(π)))−(1/2)=((πscch(π)−1)/2)
$${let}\:{f}\left({z}\right)=\frac{\pi}{{sin}\left(\pi{z}\right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)},{pol}\:=\mathbb{Z}\cup\left\{{i},−{i}\right\} \\ $$$$\int_{{C}} {f}\left({z}\right){dz}=\mathrm{0} \\ $$$${Res}\left({f},{k}\right)=\frac{\mathrm{1}}{\left(−\mathrm{1}\right)^{{k}} \left(\mathrm{1}+{k}^{\mathrm{2}} \right)},\forall{k}\in\mathbb{Z} \\ $$$${Res}\left({f},{i}\right)=\frac{\pi}{\mathrm{2}{isin}\left({i}\pi\right)}=\frac{\pi}{−\mathrm{2}{sh}\left(\pi\right)} \\ $$$${Res}\left({f},−{i}\right)=\frac{\pi}{−{sh}\left(\pi\right)} \\ $$$$\Rightarrow\underset{{n}\in\mathbb{Z}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{1}+{n}^{\mathrm{2}} }−\frac{\pi}{{sh}\left(\pi\right)}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{1}+{n}^{\mathrm{2}} }+\mathrm{1}−\frac{\pi}{{sh}\left(\pi\right)}=\mathrm{0} \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{1}+{n}^{\mathrm{2}} }=\frac{\pi}{\mathrm{2}{sh}\left(\pi\right)}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\pi{scch}\left(\pi\right)−\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mnjuly1970 last updated on 30/Jan/21
tayeballah mr power..  thank you...
$${tayeballah}\:{mr}\:{power}.. \\ $$$${thank}\:{you}… \\ $$
Commented by mindispower last updated on 30/Jan/21
withe pleasur god bless you
$${withe}\:{pleasur}\:{god}\:{bless}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *