Menu Close

advanced-mathematics-digamma-limit-if-k-gt-0-then-prove-that-lim-x-0-1-x-k-




Question Number 115193 by mnjuly1970 last updated on 24/Sep/20
           ...advanced  mathematics...           ::   digamma  limit  ::            if   k>0  then                              prove  that                                        lim_(x→0)  (1/x)(ψ(((k+x)/(2x))) − ψ((k/(2x)))) =(1/k)    ✓         m.n.july.1970...
advancedmathematics::digammalimit::ifk>0thenprovethatlimx01x(ψ(k+x2x)ψ(k2x))=1km.n.july.1970
Commented by Tawa11 last updated on 06/Sep/21
great
great
Answered by mathdave last updated on 24/Sep/20
solution  let I=lim_(x→0) ((1/x)(ψ((m/(2x))+(1/2))−ψ((m/(2x))))  we known  ∫_0 ^1 (t^(n−1) /(1+t))dt=(1/2)(ψ((k/2)+(1/2))−ψ((k/2)))  let k=(m/x)  I=(2/x)∫_0 ^1 (t^((m/x)−1) /(1+t))dt     z=(m/x)  I=(2/m)∫_0 ^1 ((zt^(z−1) )/(1+t))dt  ( let  ∫dv=∫zt^(z−1) dz,v=t^z    and u=(1/(1+t)),du=−(1/((1+t)^2 ))) using IBP  I=(2/m)((t^z /(1+t)))_0 ^1 +(2/m)∫_0 ^1 (t^z /((1+t)^2 ))dt=(1/m)+(2/m)lim_(z→∞) ∫_0 ^1 (t^z /((1+t)^2 ))dt  let y=(1/t),dy=−(1/t^2 )  I=(1/m)+(2/m)lim_(z→∞) ∫_∞ ^1 (y^(−z) /((1+(1/y))^2 ))×−(1/y^2 )dy  I=(1/m)+(2/m)lim_(z→∞) ∫_0 ^∞ (y^2 /(y^z (1+y)^2 ))×(dy/y^2 )=((1/m)+(2/m)lim_(z→∞) ∫_1 ^∞ (dy/(y^z (1+y)^2 )))=(1/m)  ∵lim_(x→0) (1/x)(ψ((m/(2x))+(1/2))−ψ((m/(2x))))=(1/m)   Q.E.D  by mathdave(24/09/2020)
solutionletI=limx0(1x(ψ(m2x+12)ψ(m2x))weknown01tn11+tdt=12(ψ(k2+12)ψ(k2))letk=mxI=2x01tmx11+tdtz=mxI=2m01ztz11+tdt(letdv=ztz1dz,v=tzandu=11+t,du=1(1+t)2)usingIBPI=2m(tz1+t)01+2m01tz(1+t)2dt=1m+2mlimz01tz(1+t)2dtlety=1t,dy=1t2I=1m+2mlimz1yz(1+1y)2×1y2dyI=1m+2mlimz0y2yz(1+y)2×dyy2=(1m+2mlimz1dyyz(1+y)2)=1mlimx01x(ψ(m2x+12)ψ(m2x))=1mQ.E.Dbymathdave(24/09/2020)
Commented by mnjuly1970 last updated on 24/Sep/20
good work
goodwork

Leave a Reply

Your email address will not be published. Required fields are marked *