Question Number 114135 by mnjuly1970 last updated on 17/Sep/20

Answered by MJS_new last updated on 17/Sep/20
![∫(dx/((x^2 −x+1)^2 (√x)))= [t=(√x) → dx=2(√x)dt] =2∫(dt/((t^4 −t^2 +1)^2 ))= [Ostrogradski′s Method] =((t(t^2 +1))/(3(t^4 −t^2 +1)))+(1/3)∫((t^2 +5)/(t^4 −t^2 +1))dt (1/3)∫((t^2 +5)/(t^4 −t^2 +1))dt= =(1/(18))∫(((4(√3)t+15)/(t^2 +(√3)t+1))−((4(√3)t−15)/(t^2 −(√3)t+1)))dt= [using formula] =((√3)/9)ln ((t^2 +(√3)t+1)/(t^2 −(√3)t+1)) +arctan (2t−(√3)) +arctan (2t+(√3)) ⇒ ∫(dx/((x^2 −x+1)^2 (√x)))= =(((x+1)(√x))/(3(x^2 −x+1)))+ln ((x+1+(√(3x)))/(x+1−(√(3x)))) +arctan (2(√x)−(√3)) +arctan (2(√x)+(√3)) +C ⇒ (1/π)∫_0 ^∞ (dx/((x^2 −x+1)^2 (√x)))=1](https://www.tinkutara.com/question/Q114148.png)
Commented by mnjuly1970 last updated on 17/Sep/20

Answered by mathmax by abdo last updated on 18/Sep/20

Commented by mathmax by abdo last updated on 18/Sep/20
