Menu Close

Advanced-mathematics-i-prove-that-1-pi-0-1-x-2-x-1-2-x-dx-1-ii-evaluate-0-1-x-2-ln-x-ln-1-x-dx-




Question Number 114135 by mnjuly1970 last updated on 17/Sep/20
            ....Advanced  mathematics ...               i:: prove  that :    Ω=(1/π)∫_0 ^( ∞) (1/((x^2 −x+1)^2 (√x)))dx =1                 ii::evaluate ::  Φ = ∫_0 ^( 1) x^2  ln(x) ln(1−x)dx=???                            ....m.n.july. 1970....
.Advancedmathematicsi::provethat:Ω=1π01(x2x+1)2xdx=1ii::evaluate::Φ=01x2ln(x)ln(1x)dx=???.m.n.july.1970.
Answered by MJS_new last updated on 17/Sep/20
∫(dx/((x^2 −x+1)^2 (√x)))=       [t=(√x) → dx=2(√x)dt]  =2∫(dt/((t^4 −t^2 +1)^2 ))=       [Ostrogradski′s Method]  =((t(t^2 +1))/(3(t^4 −t^2 +1)))+(1/3)∫((t^2 +5)/(t^4 −t^2 +1))dt  (1/3)∫((t^2 +5)/(t^4 −t^2 +1))dt=  =(1/(18))∫(((4(√3)t+15)/(t^2 +(√3)t+1))−((4(√3)t−15)/(t^2 −(√3)t+1)))dt=       [using formula]  =((√3)/9)ln ((t^2 +(√3)t+1)/(t^2 −(√3)t+1)) +arctan (2t−(√3)) +arctan (2t+(√3))  ⇒  ∫(dx/((x^2 −x+1)^2 (√x)))=  =(((x+1)(√x))/(3(x^2 −x+1)))+ln ((x+1+(√(3x)))/(x+1−(√(3x)))) +arctan (2(√x)−(√3)) +arctan (2(√x)+(√3)) +C  ⇒ (1/π)∫_0 ^∞ (dx/((x^2 −x+1)^2 (√x)))=1
dx(x2x+1)2x=[t=xdx=2xdt]=2dt(t4t2+1)2=[OstrogradskisMethod]=t(t2+1)3(t4t2+1)+13t2+5t4t2+1dt13t2+5t4t2+1dt==118(43t+15t2+3t+143t15t23t+1)dt=[usingformula]=39lnt2+3t+1t23t+1+arctan(2t3)+arctan(2t+3)dx(x2x+1)2x==(x+1)x3(x2x+1)+lnx+1+3xx+13x+arctan(2x3)+arctan(2x+3)+C1π0dx(x2x+1)2x=1
Commented by mnjuly1970 last updated on 17/Sep/20
thank you so much mr
thankyousomuchmr
Answered by mathmax by abdo last updated on 18/Sep/20
let prove thst ∫_0 ^∞  (dx/((x^2 −x+1)^2 (√x))) =π  changement (√x)=t give I =∫_0 ^∞   ((2tdt)/((t^4 −t^2  +1)^2 t))  =2 ∫_0 ^∞  (dt/((t^4 −t^2  +1)^2 )) =∫_(−∞) ^(+∞)  (dt/((t^4 −t^2  +1)^2 )) let ϕ(z) =(1/((z^4 −z^2  +1)^2 ))  poles of ϕ?   z^4 −z^2  +1 =0 ⇒u^2 −u+1 =0  (u=z^2 )  Δ =−3 ⇒u_1 =((1+3i)/2) =e^((iπ)/3)  and u_2 =((1−3i)/2) =e^(−((iπ)/3))   ⇒z^4 −z^2  +1 =(z^2 −e^((iπ)/3) )(z^2 −e^(−((iπ)/3)) ) =(z−e^((iπ)/6) )(z+e^((iπ)/6) )(z−e^(−((iπ)/6)) )(z+e^(−i(π/6)) )  ⇒ϕ(z) =(1/((z−e^((iπ)/6) )^2 (z+e^((iπ)/6) )^2 (z−e^(−((iπ)/6)) )^2 (z+e^(−((iπ)/6)) )^2 ))  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ{ Res(ϕ,e^((iπ)/6) )+Res(ϕ,−e^(−((iπ)/6)) )}  Res(ϕ,e^((iπ)/6) ) =lim_(z→e^((iπ)/6) )   (1/((2−1)!)){(z−e^((iπ)/6) )^2 ϕ(z)}^((1))   =lim_(z→e^((iπ)/6) )    {(1/((z+e^((iπ)/6) )^2 (z^2 −e^(−((iπ)/3)) )^2 ))}^((1))   =−lim_(z→e^((iπ)/6) )  ((2(z+e^((iπ)/6) )(z^2 −e^(−((iπ)/3)) )^(2 )  +4z(z^2 −e^(−((iπ)/3)) )(z+e^((iπ)/6) )^2 )/((z+e^((iπ)/6) )^4 (z^2 −e^(−((iπ)/3)) )^4 ))  =−2lim_(z→e^((iπ)/6) )   (((z^2 −e^(−((iπ)/3)) )+2z(z+e^((iπ)/6) ))/((z+e^((iπ)/6) )^3 (z^2 −e^(−((iπ)/3)) )^3 )) ....be continued....
letprovethst0dx(x2x+1)2x=πchangementx=tgiveI=02tdt(t4t2+1)2t=20dt(t4t2+1)2=+dt(t4t2+1)2letφ(z)=1(z4z2+1)2polesofφ?z4z2+1=0u2u+1=0(u=z2)Δ=3u1=1+3i2=eiπ3andu2=13i2=eiπ3z4z2+1=(z2eiπ3)(z2eiπ3)=(zeiπ6)(z+eiπ6)(zeiπ6)(z+eiπ6)φ(z)=1(zeiπ6)2(z+eiπ6)2(zeiπ6)2(z+eiπ6)2+φ(z)dz=2iπ{Res(φ,eiπ6)+Res(φ,eiπ6)}Res(φ,eiπ6)=limzeiπ61(21)!{(zeiπ6)2φ(z)}(1)=limzeiπ6{1(z+eiπ6)2(z2eiπ3)2}(1)=limzeiπ62(z+eiπ6)(z2eiπ3)2+4z(z2eiπ3)(z+eiπ6)2(z+eiπ6)4(z2eiπ3)4=2limzeiπ6(z2eiπ3)+2z(z+eiπ6)(z+eiπ6)3(z2eiπ3)3.becontinued.
Commented by mathmax by abdo last updated on 18/Sep/20
let I =∫_(−∞) ^(+∞)  (dx/((x^4 −x^2 +1)^2 )) let try parametric method  f(a) =∫_(−∞) ^(+∞)  (dx/(x^4 −x^(2 ) +a)) with a>(1/4) we have f^′ (a) =−∫_(−∞) ^(+∞)  (dx/((x^4 −x^2  +a)^2 ))  I =−f^′ (1) let explicit f(a)  ϕ(z) =(1/(z^4 −z^2  +a))  poles of ϕ?  u^2 −u+a =0  (u=z^2 )→Δ =1−4a<0 ⇒u_1 =((1+i(√(4a−1)))/2)  u_2 =((1−i(√(4a−1)))/2)  we have ∣u_1 ∣ =(1/2)(√(1+4a−1))=(√a) ⇒  u_1 =(√a)e^(iar4tan(√(4a−1)))   and u_2 =(√a)e^(−iarctan((√(4a−1))))  ⇒  z^4 −z^2  +a =(z^2 −(√a)e^(iarctan((√(4a))−1)) )(z^2 −(√a)e^(−iarftan((√(4a−1)))) ) ⇒  ϕ(z) =(1/((z−(√(√a))e^((i/2)arctan((√(4a−1)))) )(z+(√(√a)) e^((i/2)arctan((√(4a−1)))) )(z−(√(√a))e^(−(i/2)arctan((√(4a−1)))) )(z+(√(√a))e^(−(i/2)arctan((√({a−1)))) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,(√(√a))e^((i/2)arctan((√(4a))−1) )+Res(ϕ,−(√(√a))e^(−(i/2)arctan((√(4a−1)))) }  Res(ϕ,(^4 (√a))e^((i/2)arctan((√(4a−1)))) )  =(1/(2(^4 (√a))e^((i/2)ar4tan((√(4a−1)))) ×(√a)(2i sin(arctan((√(4a−1)))))  =(e^(−(i/2)arctan((√(4a−1)))) /(4i a^(3/4)  sin(arctan((√(4a−1)))))  Res(ϕ,−(^4 (√a))e^(−(i/2)arctan((√(4a−1)))) )  =(1/(−2(^4 (√a))e^(−(i/2)arctan((√(4a−1)))) ((√a))(−2i sin(arctan((√(4a−1)))))  =(e^((i/2)arctan((√(4a−1)))) /(4i a^(3/4)  sin(arctan((√(4a−1))))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{(a^(−(3/4)) /(4i))×(e^(−(i/2)arctan((√(4a−1)))) /(sin(arctan((√(4a−1)))))+(a^(−(3/4)) /(4i))×(e^((i/2)arctan((√(4a−1)))) /(sin(arctan((√(4a−1)))))}  =(π/(2 a^(3/4)  sin(arctan((√(4a−1)))))×2cos(arctan((√(4a−1)))  ....be continued....
letI=+dx(x4x2+1)2lettryparametricmethodf(a)=+dxx4x2+awitha>14wehavef(a)=+dx(x4x2+a)2I=f(1)letexplicitf(a)φ(z)=1z4z2+apolesofφ?u2u+a=0(u=z2)Δ=14a<0u1=1+i4a12u2=1i4a12wehaveu1=121+4a1=au1=aeiar4tan4a1andu2=aeiarctan(4a1)z4z2+a=(z2aeiarctan(4a1))(z2aeiarftan(4a1))φ(z)=1(zaei2arctan(4a1))(z+aei2arctan(4a1))(zaei2arctan(4a1))(z+aei2arctan({a1))+φ(z)dz=2iπ{Res(φ,aei2arctan(4a1)+Res(φ,aei2arctan(4a1)}Res(φ,(4a)ei2arctan(4a1))=12(4a)ei2ar4tan(4a1)×a(2isin(arctan(4a1)=ei2arctan(4a1)4ia34sin(arctan(4a1)Res(φ,(4a)ei2arctan(4a1))=12(4a)ei2arctan(4a1)(a)(2isin(arctan(4a1)=ei2arctan(4a1)4ia34sin(arctan(4a1)+φ(z)dz=2iπ{a344i×ei2arctan(4a1)sin(arctan(4a1)+a344i×ei2arctan(4a1)sin(arctan(4a1)}=π2a34sin(arctan(4a1)×2cos(arctan(4a1).becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *