advanced-mathematics-please-demonstrate-that-0-1-xlog-1-x-log-1-x-1-4-log-2-m-n-july-1970- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 111719 by mnjuly1970 last updated on 04/Sep/20 ….advancedmathematics….pleasedemonstratethat::Φ=∫01xlog(1−x).log(1+x)=14−log(2)…You can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math mode Answered by mathmax by abdo last updated on 05/Sep/20 lettakeatryletA=∫01xln(1−x)ln(1+x)dxwehaveddxln(1+x)=11+x=∑n=0∞(−1)nxn⇒ln(1+x)=∑n=0∞(−1)nxn+1n+1+c(c=0)=∑n=1∞(−1)n−1nxn⇒A=∫01xln(1−x)∑n=1∞(−1)n−1nxndx=∑n=1∞(−1)n−1n∫01xn+1ln(1−x)dxletUn=∫01xn+1ln(1−x)dxbypartsUn=[xn+2−1n+2ln(1−x)]01−∫01xn+2−1n+2(−11−x)dx=0+1n+2∫01xn+2−11−xdx=−1n+2∫01xn+2−1x−1dx=−1n+2∫01(x−1)(1+x+x2+…+xn+1x−1dx=−1n+2∫(1+x+x2+…+xn+1)dx=−1n+2[x+x22+x33+….+xn+2n+2]01=−1n+2(1+12+13+….+1n+2)=−Hn+2n+2(Hn=∑k=1n1k)⇒A=−∑n=1∞(−1)n−1n.Hn+2n+2=∑n=1∞(−1)n(1n−1n+2)Hn+2=∑n=1∞(−1)nHn+2n−∑n=1∞(−1)nHn+2n+2∑n=1∞(−1)nHn+2n=n+2=p∑p=3∞(−1)p−2Hpp−2=∑n=3∞(−1)nHnn−2∑n=1∞(−1)nHn+2n+2=∑n=3∞(−1)nHnn⇒A=∑n=3∞(−1)nn−2Hn−∑n=3∞(−1)nnHnresttofindvsluesofthoseseries….becontinued… Answered by maths mind last updated on 07/Sep/20 log(1−x)log(1+x)=14[(log(1−x)+log(1+x))2−(log(1−x)−log(1+x))2]=log2(1−x2)4−log2(1−x1+x)4Φ=14∫01xlog2(1−x2)dx−14∫01xlog2(1−x1+x)dxΦ=14(I−J)I=∫01xlog2(1−x2)dxletu=x2⇒xdx=du2I=12∫01log2(1−u)duβ(x,y)=∫01tx−1(1−t)y−1⇒∂2yβ(1,1)=2IJ=∫01xlog2(1−x1+x)dxu=1−x1+x⇒x=1−u1+udx=−2(1+u)2du=2∫01(1−u)(1+u)3.log2(u)du=2∫01(−1(1+u)2+2(1+u)3)log2(u)duMissing \left or extra \rightMissing \left or extra \right−4∫01[log(u)u(1+u)−log(u)(1+u)2u]du=−4∫01log(u)(1+u)2du=4limx→0([log(u)1+u]x1−∫x1duu(1+u))=4limx→0[−log(x)1+x+log(x)+log(2)−log(1+x)]=4log(2)∂yβ(x,y)=β(x,y){Ψ(y)−Ψ(x+y)}∂2yβ(x,y)=β(x,y)[{Ψ(y)−Ψ(x+y)}2+(Ψ′(y)−Ψ′(x+y))]={Ψ(1)−Ψ(2)}2+(Ψ′(1)−Ψ′(2))=(−γ−(−γ−1))+(ζ(2)−(ζ(2)−1))2=2I=12∂2yβ(1,1)=1Φ=14(I−J)=14(1−4log(2))=14−log(2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-46180Next Next post: The-base-of-a-right-pyramid-is-a-hexagon-of-side-16-cm-and-its-lateral-surface-is-720-sq-cm-Is-the-height-of-the-pyramid-will-be- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.