Menu Close

advanced-mathematics-please-demonstrate-that-0-1-xlog-1-x-log-1-x-1-4-log-2-m-n-july-1970-




Question Number 111719 by mnjuly1970 last updated on 04/Sep/20
                    ....advanced  mathematics....     please  demonstrate that::     Φ =∫_0 ^( 1) xlog(1−x).log(1+x)= (1/4) − log(2)  ...          m.n.july 1970 #
.advancedmathematics.pleasedemonstratethat::Φ=01xlog(1x).log(1+x)=14log(2)You can't use 'macro parameter character #' in math mode
Answered by mathmax by abdo last updated on 05/Sep/20
let take a try let  A =∫_0 ^1  xln(1−x)ln(1+x)dx we have  (d/dx)ln(1+x) =(1/(1+x)) =Σ_(n=0) ^(∞ ) (−1)^n  x^n  ⇒ln(1+x) =Σ_(n=0) ^∞  (((−1)^n  x^(n+1) )/(n+1)) +c(c=0)  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n  ⇒ A =∫_0 ^1 xln(1−x)Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n  dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^1  x^(n+1) ln(1−x)dx let U_n =∫_0 ^1  x^(n+1)  ln(1−x)dx  by parts U_n =[((x^(n+2) −1)/(n+2)) ln(1−x)]_0 ^1 −∫_0 ^1 ((x^(n+2) −1)/(n+2))(((−1)/(1−x)))dx  =0 +(1/(n+2)) ∫_0 ^1  ((x^(n+2) −1)/(1−x)) dx =−(1/(n+2)) ∫_0 ^1  ((x^(n+2) −1)/(x−1)) dx  =−(1/(n+2)) ∫_0 ^1 (((x−1)(1+x+x^2 +...+x^(n+1) )/(x−1)) dx  =−(1/(n+2)) ∫ (1+x+x^2  +...+x^(n+1) )dx =−(1/(n+2))[x+(x^2 /2) +(x^3 /3)+....+(x^(n+2) /(n+2))]_0 ^1   =−(1/(n+2))(1+(1/2)+(1/3)+....+(1/(n+2))) =−(H_(n+2) /(n+2))  (H_n =Σ_(k=1) ^n  (1/k)) ⇒  A =−Σ_(n=1) ^∞  (((−1)^(n−1) )/n).(H_(n+2) /(n+2)) =Σ_(n=1) ^∞ (−1)^n ((1/n)−(1/(n+2)))H_(n+2)   =Σ_(n=1) ^∞  (((−1)^(n ) H_(n+2) )/n) −Σ_(n=1) ^∞  (((−1)^n  H_(n+2) )/(n+2))  Σ_(n=1) ^∞  (((−1)^n  H_(n+2) )/n) =_(n+2=p)   Σ_(p=3) ^∞  (((−1)^(p−2)  H_p )/(p−2)) =Σ_(n=3) ^∞  (((−1)^n  H_n )/(n−2))  Σ_(n=1) ^∞  (((−1)^n  H_(n+2) )/(n+2)) =Σ_(n=3) ^∞  (((−1)^n  H_n )/n) ⇒  A =Σ_(n=3) ^∞  (((−1)^n )/(n−2)) H_n −Σ_(n=3) ^∞  (((−1)^n )/n) H_n   rest to find vslues of those series ....be continued...
lettakeatryletA=01xln(1x)ln(1+x)dxwehaveddxln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1+c(c=0)=n=1(1)n1nxnA=01xln(1x)n=1(1)n1nxndx=n=1(1)n1n01xn+1ln(1x)dxletUn=01xn+1ln(1x)dxbypartsUn=[xn+21n+2ln(1x)]0101xn+21n+2(11x)dx=0+1n+201xn+211xdx=1n+201xn+21x1dx=1n+201(x1)(1+x+x2++xn+1x1dx=1n+2(1+x+x2++xn+1)dx=1n+2[x+x22+x33+.+xn+2n+2]01=1n+2(1+12+13+.+1n+2)=Hn+2n+2(Hn=k=1n1k)A=n=1(1)n1n.Hn+2n+2=n=1(1)n(1n1n+2)Hn+2=n=1(1)nHn+2nn=1(1)nHn+2n+2n=1(1)nHn+2n=n+2=pp=3(1)p2Hpp2=n=3(1)nHnn2n=1(1)nHn+2n+2=n=3(1)nHnnA=n=3(1)nn2Hnn=3(1)nnHnresttofindvsluesofthoseseries.becontinued
Answered by maths mind last updated on 07/Sep/20
log(1−x)log(1+x)=(1/4)[(log(1−x)+log(1+x))^2 −(log(1−x)−log(1+x))^2 ]  =((log^2 (1−x^2 ))/4)−((log^2 (((1−x)/(1+x))))/4)  Φ=(1/4)∫_0 ^1 xlog^2 (1−x^2 )dx−(1/4)∫_0 ^1 xlog^2 (((1−x)/(1+x)))dx  Φ=(1/4)(I−J)  I=∫_0 ^1 xlog^2 (1−x^2 )dx let u=x^2 ⇒xdx=(du/2)  I=(1/2)∫_0 ^1 log^2 (1−u)du  β(x,y)=∫_0 ^1 t^(x−1) (1−t)^(y−1) ⇒∂^2 yβ(1,1)=2I  J=∫_0 ^1 xlog^2 (((1−x)/(1+x)))dx  u=((1−x)/(1+x))⇒x=((1−u)/(1+u))  dx=−(2/((1+u)^2 ))du  =2∫_0 ^1 (((1−u))/((1+u)^3 )).log^2 (u)du  =2∫_0 ^1 (−(1/((1+u)^2 ))+(2/((1+u)^3 )))log^2 (u)du  =lim_(y→0) 2[_y ^1 ((1/(1+u))−(1/((1+u)^2 ))).]log^2 (u)_(=0)   −4∫_0 ^1 [((log(u))/(u(1+u)))−((log(u))/((1+u)^2 u))]du  =−4∫_0 ^1 ((log(u))/((1+u)^2 ))du=4lim_(x→0) ([((log(u))/(1+u))]_x ^1 −∫_x ^1 (du/(u(1+u))))  =4lim_(x→0) [−((log(x))/(1+x))+log(x)+log(2)−log(1+x)]  =4log(2)  ∂_y β(x,y)=β(x,y){Ψ(y)−Ψ(x+y)}  ∂^2 yβ(x,y)=β(x,y)[{Ψ(y)−Ψ(x+y)}^2 +(Ψ′(y)−Ψ′(x+y))]  ={Ψ(1)−Ψ(2)}^2 +(Ψ′(1)−Ψ′(2))=(−γ−(−γ−1))+(ζ(2)−(ζ(2)−1))^2 =2  I=(1/2)∂^2 yβ(1,1)=1  Φ=(1/4)(I−J)=(1/4)(1−4log(2))=(1/4)−log(2)
log(1x)log(1+x)=14[(log(1x)+log(1+x))2(log(1x)log(1+x))2]=log2(1x2)4log2(1x1+x)4Φ=1401xlog2(1x2)dx1401xlog2(1x1+x)dxΦ=14(IJ)I=01xlog2(1x2)dxletu=x2xdx=du2I=1201log2(1u)duβ(x,y)=01tx1(1t)y12yβ(1,1)=2IJ=01xlog2(1x1+x)dxu=1x1+xx=1u1+udx=2(1+u)2du=201(1u)(1+u)3.log2(u)du=201(1(1+u)2+2(1+u)3)log2(u)duMissing \left or extra \right401[log(u)u(1+u)log(u)(1+u)2u]du=401log(u)(1+u)2du=4limx0([log(u)1+u]x1x1duu(1+u))=4limx0[log(x)1+x+log(x)+log(2)log(1+x)]=4log(2)yβ(x,y)=β(x,y){Ψ(y)Ψ(x+y)}2yβ(x,y)=β(x,y)[{Ψ(y)Ψ(x+y)}2+(Ψ(y)Ψ(x+y))]={Ψ(1)Ψ(2)}2+(Ψ(1)Ψ(2))=(γ(γ1))+(ζ(2)(ζ(2)1))2=2I=122yβ(1,1)=1Φ=14(IJ)=14(14log(2))=14log(2)

Leave a Reply

Your email address will not be published. Required fields are marked *