Menu Close

advanced-mathematics-prove-that-lim-x-1-x-1-x-1-Euler-mascheroni-constant-m-n-huly-1970-




Question Number 116005 by mnjuly1970 last updated on 30/Sep/20
         ... advanced  mathematics...         prove  that:::                      lim_(x→1^+ ) ( ζ( x ) −(1/(x − 1))) =^(???) γ       γ:: Euler − mascheroni constant.                 m.n.huly 1970
$$\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{mathematics}… \\ $$$$ \\ $$$$\:\:\:\:\:{prove}\:\:{that}::: \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{lim}_{{x}\rightarrow\mathrm{1}^{+} } \left(\:\zeta\left(\:{x}\:\right)\:−\frac{\mathrm{1}}{{x}\:−\:\mathrm{1}}\right)\:\overset{???} {=}\gamma\:\:\: \\ $$$$\:\:\gamma::\:\mathscr{E}{uler}\:−\:{mascheroni}\:{constant}. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{huly}\:\mathrm{1970} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *