Menu Close

advsnced-calculus-calculate-0-e-x-ln-1-1-x-dx-




Question Number 129418 by mnjuly1970 last updated on 15/Jan/21
            ...advsnced      calculus....         calculate: Ω=∫_0 ^( ∞) e^(−(√x) ) ln(1+(1/( (√x) )))dx
advsncedcalculus.calculate:Ω=0exln(1+1x)dx
Answered by Dwaipayan Shikari last updated on 15/Jan/21
∫_0 ^∞ e^(−(√x)) log(1+(√x))−∫_0 ^∞ e^(−(√x)) log((√x))dx  =2∫_0 ^∞ te^(−t) log(1+t)−2∫_0 ^∞ te^(−t) log(t)  =2−2(Γ′(2))=2−2(−γ+1)=2γ
0exlog(1+x)0exlog(x)dx=20tetlog(1+t)20tetlog(t)=22(Γ(2))=22(γ+1)=2γ
Commented by mnjuly1970 last updated on 15/Jan/21
excellent...grateful..
excellentgrateful..
Answered by mindispower last updated on 15/Jan/21
(√x)=t  ⇒∫_0 ^∞ e^(−t) ln(1+(1/t)).2tdt  ∫ln(1+t)te^(−t) dt  by part  ∫te^(−t) dt=−(t+1)e^(−t) dt  ∫_0 ^∞ ln(1+t)te^(−t) dt=[−(t+1)e^(−t) ln(1+t)]_0 ^∞ +∫(((t+1)e^(−t) )/(t+1))dt  =∫_0 ^∞ e^(−t) dt=Γ(1)=1  ∫_0 ^∞ te^(−t) ln(t)dt=∂_x ∫_0 ^∞ t^(x−1) e^(−t) dt∣_(x=2) =Γ′(2)=Γ(2)Ψ(2)  =Ψ(2)=1+Ψ(1)=1−γ  ∫_0 ^∞ e^(−t) ln(1+(1/t)).2tdt=2∫_0 ^∞ e^(−t) ln(1+t)tdt−2∫_0 ^∞ e^(−t) tln(t)dt  =2.1−2(1−γ)=2γ
x=t0etln(1+1t).2tdtln(1+t)tetdtbyparttetdt=(t+1)etdt0ln(1+t)tetdt=[(t+1)etln(1+t)]0+(t+1)ett+1dt=0etdt=Γ(1)=10tetln(t)dt=x0tx1etdtx=2=Γ(2)=Γ(2)Ψ(2)=Ψ(2)=1+Ψ(1)=1γ0etln(1+1t).2tdt=20etln(1+t)tdt20ettln(t)dt=2.12(1γ)=2γ
Commented by mnjuly1970 last updated on 16/Jan/21
very nice as always...
veryniceasalways
Answered by Lordose last updated on 16/Jan/21
  Ω = ∫_0 ^( ∞) e^(−(√x)) ln(1+(1/( (√x))))dx  u=(√x) ⇒ dx = 2udu  Ω = 2∫_0 ^( ∞) ue^(−u) ln(1+(1/u))du = 2∫_0 ^( ∞) ue^(−u) ln(((1+u)/u))du  Ω = 2(∫_0 ^( ∞) ue^(−u) ln(1+u)du − ∫_0 ^( ∞) ue^(−u) ln(u)du)  Φ = ∫_0 ^( ∞) ue^(−u) ln(1+u)du =^(IBP)  ∣−e^(−u) (1+u)ln(1+u)∣_0 ^∞  + ∫_0 ^( ∞) e^(−u) du  Φ = 1  Ω = 2(Φ − ∫_0 ^( ∞) ue^(−u) ln(u)du)  Ω =  2(1 − ∫_0 ^( ∞) ue^(−u) ln(u)du) = 2− (∂/∂a)∣_(a=0) 2∫_0 ^( ∞) u^(1+a−1) e^(−u) du  Ω = 2 − (∂/∂a)∣_(a=0) 2Γ(1+a) =2− 2Γ(1+a)ψ^0 (1+a)∣_(a=0)  = 2 − 2(1−γ)  Ω = 2γ  Where 𝛄 = Euler mascheroni constant  ★L𝛗rD ∅sE
Ω=0exln(1+1x)dxu=xdx=2uduΩ=20ueuln(1+1u)du=20ueuln(1+uu)duΩ=2(0ueuln(1+u)du0ueuln(u)du)Φ=0ueuln(1+u)du=IBPeu(1+u)ln(1+u)0+0euduΦ=1Ω=2(Φ0ueuln(u)du)Ω=2(10ueuln(u)du)=2aa=020u1+a1euduΩ=2aa=02Γ(1+a)=22Γ(1+a)ψ0(1+a)a=0=22(1γ)Ω=2γWhereγ=EulermascheroniconstantLϕrDsE
Commented by mnjuly1970 last updated on 16/Jan/21
thank you mr lordos...
thankyoumrlordos

Leave a Reply

Your email address will not be published. Required fields are marked *