Menu Close

ae-x-dx-




Question Number 24363 by gopikrishnan005@gmail.com last updated on 16/Nov/17
∫(ae)^x dx
(ae)xdx
Answered by ajfour last updated on 16/Nov/17
=(((ae)^x )/(1+ln a))+C .
=(ae)x1+lna+C.
Commented by gopikrishnan005@gmail.com last updated on 16/Nov/17
pls explain
plsexplain
Answered by abwayh last updated on 16/Nov/17
let  u=(ae)^x     ln u=xln (ae)  ln u=x(ln a+1)  (1/u) du=(ln a+1)dx  dx=(du/(u(ln a+1)))  ∫(ae)^x dx=∫((  udu)/(u(ln a+1)))=∫(du/((ln a+1)))=(u/((ln a+1)))+c                       =(((ae)^x )/((lna+1)))+c
letu=(ae)xlnu=xln(ae)lnu=x(lna+1)1udu=(lna+1)dxdx=duu(lna+1)(ae)xdx=uduu(lna+1)=du(lna+1)=u(lna+1)+c=(ae)x(lna+1)+c
Commented by gopikrishnan005@gmail.com last updated on 17/Nov/17
thank u sir..one dbt loge value 1 ah sir
thankusir..onedbtlogevalue1ahsir
Answered by A1B1C1D1 last updated on 17/Nov/17
    There integral must be done piecewtemose:    For the interval where:    log (ae) = 0    ∫ (ea)^x  dx = (((ea)^x )/(ln(ea))) our x for log (a + 1) = 0    The answere is:     { ((x               for log (a + 1) = 0)),(((((ea)^x )/(ln(ea)))     otherwtemose        ^(       + C) )) :}
Thereintegralmustbedonepiecewtemose:Fortheintervalwhere:log(ae)=0(ea)xdx=(ea)xln(ea)ourxforlog(a+1)=0Theanswereis:{xforlog(a+1)=0(ea)xln(ea)otherwtemose+C

Leave a Reply

Your email address will not be published. Required fields are marked *