Algebra-1-G-is-a-group-and-o-G-p-2-prove-that-G-is-an-abelian-group-hint-p-is-prime-number- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 192399 by mnjuly1970 last updated on 17/May/23 Algebra(1)G,isagroupando(G)=p2.provethatGisanabeliangroup.hint:(pisprimenumber)−−−−−−−−−−−−− Commented by aleks041103 last updated on 21/May/23 o(G)istheorderofthegroup,right?I.e.thenumberofelementsinG Answered by aleks041103 last updated on 21/May/23 let′susethecenterofG,i.e.Z(G)=Z={z∈G∣gz=zg,∀g∈G}itisknownthatZ⊴G.bylagrange′stheorem:o(Z)o(G/Z)=o(G)=p2⇒o(Z)=1,p,p21stcase:―ifo(Z)=p2=o(G),thenG=Z⇒Gisabelian.2ndcase:―ifo(Z)=p,theno(G/Z)=p.everygroupofprimeorderiscyclic.⇒∃a∉Z,s.t.G/Z={akZ∣k=0,1,…,p−1}⇒∀g∈G,∃z∈Z,∃k∈Zp:g=akz⇒letg1,g2∈G⇒g1=ajz1andg2=akz2⇒g1g2=ajz1akz2sincez1,2∈Ztheycommutewitheverything⇒g1g2=ajz1akz2=akz2ajz1=g2g1⇒GisabelianandZ≡G.3rdcase:―ifo(Z)=1,Z={e}.SinceGisap−group(o(G)=pn),itisknownthatthecenterZ(G)isnontrivial,i.e.Z(G)≠{e}.Conclusion:Gisabelian. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-126859Next Next post: find-0-1-sinx-1-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.