Question Number 192399 by mnjuly1970 last updated on 17/May/23
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Algebra}\:\left(\mathrm{1}\:\right) \\ $$$$\:\:{G},\:{is}\:{a}\:{group}\:\:{and}\:\:\:{o}\left({G}\:\right)\:=\:{p}^{\:\mathrm{2}} \:. \\ $$$$\:\:\:{prove}\:{that}\:{G}\:{is}\:{an}\:{abelian}\:{group}. \\ $$$$\:\:\:{hint}:\:\:\left(\:{p}\:{is}\:{prime}\:{number}\:\:\right) \\ $$$$\:\:\:\:\:−−−−−−−−−−−−− \\ $$
Commented by aleks041103 last updated on 21/May/23
$${o}\left({G}\right)\:{is}\:{the}\:{order}\:{of}\:{the}\:{group},\:{right}? \\ $$$${I}.{e}.\:{the}\:{number}\:{of}\:{elements}\:{in}\:{G} \\ $$
Answered by aleks041103 last updated on 21/May/23
$${let}'{s}\:{use}\:{the}\:{center}\:{of}\:{G},\:{i}.{e}.\: \\ $$$${Z}\left({G}\right)={Z}=\left\{{z}\in{G}\mid{gz}={zg},\:\forall{g}\in{G}\right\} \\ $$$${it}\:{is}\:{known}\:{that}\:{Z}\trianglelefteq{G}. \\ $$$${by}\:{lagrange}'{s}\:{theorem}: \\ $$$${o}\left({Z}\right){o}\left({G}/{Z}\right)={o}\left({G}\right)={p}^{\mathrm{2}} \\ $$$$\Rightarrow{o}\left({Z}\right)=\mathrm{1},{p},{p}^{\mathrm{2}} \\ $$$$ \\ $$$$\underline{\mathrm{1}{st}\:{case}:} \\ $$$${if}\:{o}\left({Z}\right)={p}^{\mathrm{2}} ={o}\left({G}\right),\:{then}\:{G}={Z}\Rightarrow{G}\:{is}\:{abelian}. \\ $$$$ \\ $$$$\underline{\mathrm{2}{nd}\:{case}:} \\ $$$${if}\:{o}\left({Z}\right)={p},\:{then}\:{o}\left({G}/{Z}\right)={p}. \\ $$$${every}\:{group}\:{of}\:{prime}\:{order}\:{is}\:{cyclic}. \\ $$$$\Rightarrow\exists{a}\notin{Z},\:{s}.{t}.\:{G}/{Z}=\left\{{a}^{{k}} {Z}\mid{k}=\mathrm{0},\mathrm{1},…,{p}−\mathrm{1}\right\} \\ $$$$\Rightarrow\forall{g}\in{G},\exists{z}\in{Z},\:\exists{k}\in\mathbb{Z}_{{p}} \::\:{g}={a}^{{k}} {z} \\ $$$$\Rightarrow{let}\:{g}_{\mathrm{1}} ,{g}_{\mathrm{2}} \in{G}\Rightarrow{g}_{\mathrm{1}} ={a}^{{j}} {z}_{\mathrm{1}} \:{and}\:{g}_{\mathrm{2}} ={a}^{{k}} {z}_{\mathrm{2}} \\ $$$$\Rightarrow{g}_{\mathrm{1}} {g}_{\mathrm{2}} ={a}^{{j}} {z}_{\mathrm{1}} {a}^{{k}} {z}_{\mathrm{2}} \\ $$$${since}\:{z}_{\mathrm{1},\mathrm{2}} \in{Z}\:{they}\:{commute}\:{with}\:{everything} \\ $$$$\Rightarrow{g}_{\mathrm{1}} {g}_{\mathrm{2}} ={a}^{{j}} {z}_{\mathrm{1}} {a}^{{k}} {z}_{\mathrm{2}} ={a}^{{k}} {z}_{\mathrm{2}} {a}^{{j}} {z}_{\mathrm{1}} ={g}_{\mathrm{2}} {g}_{\mathrm{1}} \\ $$$$\Rightarrow{G}\:{is}\:{abelian}\:{and}\:{Z}\equiv{G}. \\ $$$$ \\ $$$$\underline{\mathrm{3}{rd}\:{case}:} \\ $$$${if}\:{o}\left({Z}\right)=\mathrm{1},\:{Z}=\left\{{e}\right\}. \\ $$$${Since}\:{G}\:{is}\:{a}\:{p}−{group}\left({o}\left({G}\right)={p}^{{n}} \right),\:{it}\:{is}\:{known} \\ $$$${that}\:{the}\:{center}\:{Z}\left({G}\right)\:{is}\:{nontrivial},\:{i}.{e}. \\ $$$${Z}\left({G}\right)\neq\left\{{e}\right\}. \\ $$$$ \\ $$$$\boldsymbol{{Conclusion}}: \\ $$$${G}\:{is}\:{abelian}. \\ $$