Question Number 123817 by benjo_mathlover last updated on 28/Nov/20
$${Among}\:{all}\:{triangles}\:{in}\:{the}\:{first} \\ $$$${quadrant}\:{formed}\:{by}\:{the}\:{x}−{axis}, \\ $$$${the}\:{y}−{axis}\:{and}\:{tangent}\:{lines}\:{to} \\ $$$${the}\:{graph}\:{of}\:{y}\:=\:\mathrm{3}{x}−{x}^{\mathrm{2}} ,\:{what}\:{is} \\ $$$${the}\:{smallest}\:{possible}\:{area}? \\ $$
Answered by MJS_new last updated on 28/Nov/20
$$\mathrm{since}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{includes}\:\mathrm{the}\:\mathrm{origin},\:\mathrm{the} \\ $$$$\mathrm{smallest}\:\mathrm{area}\:\mathrm{is}\:\mathrm{zero} \\ $$
Commented by benjo_mathlover last updated on 28/Nov/20
$${hahaha}…{no}\:\:{sir}.\:{but}\:{thank}\:{you} \\ $$
Commented by MJS_new last updated on 28/Nov/20
$$\mathrm{I}\:\mathrm{know}\:\mathrm{the}\:\mathrm{other}\:\mathrm{one}\:\mathrm{was}\:\mathrm{meant}\:\mathrm{but}\:\mathrm{the} \\ $$$$\mathrm{degenerated}\:\mathrm{triangle}\:{A}={B}={C}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\mathrm{is} \\ $$$$\mathrm{there}\:\mathrm{without}\:\mathrm{a}\:\mathrm{doubt}…\:\mathrm{but}\:\mathrm{of}\:\mathrm{course}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{not}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangles}\:\mathrm{in}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \\ $$$$\mathrm{quadrant}\:\mathrm{but}\:\mathrm{in}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{one}. \\ $$
Answered by mr W last updated on 28/Nov/20
$${tangent}\:{point}\:{P}\left({p},{y}_{{P}} \right) \\ $$$${y}_{{P}} =\mathrm{3}{p}−{p}^{\mathrm{2}} \\ $$$${m}=\frac{{dy}}{{dx}}=\mathrm{3}−\mathrm{2}{x}=\mathrm{3}−\mathrm{2}{p} \\ $$$${eqn}.\:{of}\:{tangent}: \\ $$$${y}={m}\left({x}−{p}\right)+{y}_{{P}} \\ $$$${y}=\left(\mathrm{3}−\mathrm{2}{p}\right){x}+{p}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{x}}{\frac{{p}^{\mathrm{2}} }{\mathrm{2}{p}−\mathrm{3}}}+\frac{{y}}{{p}^{\mathrm{2}} }=\mathrm{1} \\ $$$${Area}\:{of}\:{triangle} \\ $$$${A}=\frac{{p}^{\mathrm{4}} }{\mathrm{2}\left(\mathrm{2}{p}−\mathrm{3}\right)} \\ $$$$\frac{{d}\left(\mathrm{2}{A}\right)}{{dp}}=\frac{\mathrm{4}{p}^{\mathrm{3}} }{\mathrm{2}{p}−\mathrm{3}}−\frac{\mathrm{2}{p}^{\mathrm{4}} }{\left(\mathrm{2}{p}−\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$${p}=\mathrm{0}\:\left({rejected}\right)\:{or} \\ $$$$\frac{{p}}{\mathrm{2}{p}−\mathrm{3}}=\mathrm{2} \\ $$$$\Rightarrow{p}=\mathrm{2} \\ $$$$\Rightarrow{A}_{{min}} =\frac{\mathrm{2}^{\mathrm{4}} }{\mathrm{2}\left(\mathrm{2}×\mathrm{2}−\mathrm{3}\right)}=\mathrm{8} \\ $$
Commented by mr W last updated on 28/Nov/20
Commented by benjo_mathlover last updated on 28/Nov/20
$${yes}..{thank}\:{you} \\ $$