Menu Close

an-early-question-for-the-new-year-how-many-rectangular-triangles-with-sides-a-b-c-N-exist-with-one-side-2019-




Question Number 46809 by MJS last updated on 31/Oct/18
an early question for the new year  how many rectangular triangles with sides  a, b, c ∈N^★  exist with one side =2019
anearlyquestionforthenewyearhowmanyrectangulartriangleswithsidesa,b,cNexistwithoneside=2019
Answered by MrW3 last updated on 02/Nov/18
a^2 +b^2 =c^2   case 1: with c=2019  a^2 +b^2 =2019^2 =3^2 ×673^2   let a=3p, b=3q  ⇒p^2 +q^2 =673^2   it has one and only one solution:  p=385, q=552  ⇒a=3×385=1155  ⇒b=3×552=1656    case 2: with a=2019  2019^2 +b^2 =c^2   ⇒c^2 −b^2 =(c−b)(c+b)=2019^2 =3^2 ×673^2 =m×n=1×4076361=3×1358787=9×452929=673×6057  c−b=m  c+b=n  ⇒b=((n−m)/2)  ⇒c=((n+m)/2)  ⇒b=((4076361−1)/2)=2038180  ⇒c=((4076361+1)/2)=2038181  or  ⇒b=((1358787−3)/2)=679392  ⇒c=((1358787+3)/2)=679395  or  ⇒b=((452929−9)/2)=226460  ⇒c=((452929+9)/2)=226469  or  ⇒b=((6057−673)/2)=2692  ⇒c=((6057+673)/2)=3365    so totally there exist 5 such triangles:  a/b/c=1155/1656/2019  a/b/c=2019/2692/3365  a/b/c=2019/226460/226469  a/b/c=2019/679392/679395  a/b/c=2019/2038180/2038181
a2+b2=c2case1:withc=2019a2+b2=20192=32×6732leta=3p,b=3qp2+q2=6732ithasoneandonlyonesolution:p=385,q=552a=3×385=1155b=3×552=1656case2:witha=201920192+b2=c2c2b2=(cb)(c+b)=20192=32×6732=m×n=1×4076361=3×1358787=9×452929=673×6057cb=mc+b=nb=nm2c=n+m2b=407636112=2038180c=4076361+12=2038181orb=135878732=679392c=1358787+32=679395orb=45292992=226460c=452929+92=226469orb=60576732=2692c=6057+6732=3365sototallythereexist5suchtriangles:a/b/c=1155/1656/2019a/b/c=2019/2692/3365a/b/c=2019/226460/226469a/b/c=2019/679392/679395a/b/c=2019/2038180/2038181
Commented by MJS last updated on 02/Nov/18
you′re right, thank you!
youreright,thankyou!

Leave a Reply

Your email address will not be published. Required fields are marked *