Menu Close

an-integer-n-between-1-and-98-inclusive-is-to-be-chosen-at-random-what-is-the-probability-that-n-n-1-will-be-divisible-by-3-




Question Number 103606 by bemath last updated on 16/Jul/20
an integer n between 1 and 98 ,  inclusive is to be chosen at  random. what is the probability  that n(n+1) will be divisible by 3
$${an}\:{integer}\:{n}\:{between}\:\mathrm{1}\:{and}\:\mathrm{98}\:, \\ $$$${inclusive}\:{is}\:{to}\:{be}\:{chosen}\:{at} \\ $$$${random}.\:{what}\:{is}\:{the}\:{probability} \\ $$$${that}\:{n}\left({n}+\mathrm{1}\right)\:{will}\:{be}\:{divisible}\:{by}\:\mathrm{3} \\ $$
Commented by bemath last updated on 16/Jul/20
thank you all
$${thank}\:{you}\:{all} \\ $$
Answered by OlafThorendsen last updated on 16/Jul/20
1st case :  n = 3p, p = 1..32  32 possibilities  n(n+1) can be divisible by 3  2nd case :  n = 3p+1 then n+1 = 3p+2  n(n+1) = (3p+1)(3p+2)  n(n+1) can′t be divisible by 3  3rd case :  n = 3p+2, p = 0..32  33 possibilities  then n+1 = 3p+3 = 3(p+1)  n(n+1) = 3(3p+2)(p+1)  n(n+1) can be divisible by 3  Total result :  32+0+33 = 65  probability = ((65)/(98)) ≈ 66,3%
$$\mathrm{1st}\:\mathrm{case}\:: \\ $$$${n}\:=\:\mathrm{3}{p},\:{p}\:=\:\mathrm{1}..\mathrm{32} \\ $$$$\mathrm{32}\:\mathrm{possibilities} \\ $$$${n}\left({n}+\mathrm{1}\right)\:\mathrm{can}\:\mathrm{be}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3} \\ $$$$\mathrm{2nd}\:\mathrm{case}\:: \\ $$$${n}\:=\:\mathrm{3}{p}+\mathrm{1}\:\mathrm{then}\:{n}+\mathrm{1}\:=\:\mathrm{3}{p}+\mathrm{2} \\ $$$${n}\left({n}+\mathrm{1}\right)\:=\:\left(\mathrm{3}{p}+\mathrm{1}\right)\left(\mathrm{3}{p}+\mathrm{2}\right) \\ $$$${n}\left({n}+\mathrm{1}\right)\:\mathrm{can}'\mathrm{t}\:\mathrm{be}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3} \\ $$$$\mathrm{3rd}\:\mathrm{case}\:: \\ $$$${n}\:=\:\mathrm{3}{p}+\mathrm{2},\:{p}\:=\:\mathrm{0}..\mathrm{32} \\ $$$$\mathrm{33}\:\mathrm{possibilities} \\ $$$$\mathrm{then}\:{n}+\mathrm{1}\:=\:\mathrm{3}{p}+\mathrm{3}\:=\:\mathrm{3}\left({p}+\mathrm{1}\right) \\ $$$${n}\left({n}+\mathrm{1}\right)\:=\:\mathrm{3}\left(\mathrm{3}{p}+\mathrm{2}\right)\left({p}+\mathrm{1}\right) \\ $$$${n}\left({n}+\mathrm{1}\right)\:\mathrm{can}\:\mathrm{be}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3} \\ $$$$\mathrm{Total}\:\mathrm{result}\:: \\ $$$$\mathrm{32}+\mathrm{0}+\mathrm{33}\:=\:\mathrm{65} \\ $$$$\boldsymbol{\mathrm{probability}}\:=\:\frac{\mathrm{65}}{\mathrm{98}}\:\approx\:\mathrm{66},\mathrm{3\%} \\ $$
Answered by floor(10²Eta[1]) last updated on 16/Jul/20
for n(n+1) be divisible by 3, we have 2  cases:  1)n is a multiple of 3  2)n+1 is a multiple of 3  [1, 98]→98 terms  1)AP: (3, 6, 9, ..., 96)→{a_n =3n}  3n=96⇒n=32(the AP has 32 terms)  so the probability that n is a multiple of  3 is: P_1 =((32)/(98))=((16)/(49))  2)AP: (2, 5, 8, ..., 95)→32 terms  probability of n+1 multiple of 3:  P_2 =((32)/(98))=((16)/(49))  ⇒probability that n(n+1) is divisible  by 3:  P_1 +P_2 =((32)/(49))≈65%
$$\mathrm{for}\:\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\:\mathrm{be}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3},\:\mathrm{we}\:\mathrm{have}\:\mathrm{2} \\ $$$$\mathrm{cases}: \\ $$$$\left.\mathrm{1}\right)\mathrm{n}\:\mathrm{is}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3} \\ $$$$\left.\mathrm{2}\right)\mathrm{n}+\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3} \\ $$$$\left[\mathrm{1},\:\mathrm{98}\right]\rightarrow\mathrm{98}\:\mathrm{terms} \\ $$$$\left.\mathrm{1}\right)\mathrm{AP}:\:\left(\mathrm{3},\:\mathrm{6},\:\mathrm{9},\:…,\:\mathrm{96}\right)\rightarrow\left\{\mathrm{a}_{\mathrm{n}} =\mathrm{3n}\right\} \\ $$$$\mathrm{3n}=\mathrm{96}\Rightarrow\mathrm{n}=\mathrm{32}\left(\mathrm{the}\:\mathrm{AP}\:\mathrm{has}\:\mathrm{32}\:\mathrm{terms}\right) \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{n}\:\mathrm{is}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of} \\ $$$$\mathrm{3}\:\mathrm{is}:\:\mathrm{P}_{\mathrm{1}} =\frac{\mathrm{32}}{\mathrm{98}}=\frac{\mathrm{16}}{\mathrm{49}} \\ $$$$\left.\mathrm{2}\right)\mathrm{AP}:\:\left(\mathrm{2},\:\mathrm{5},\:\mathrm{8},\:…,\:\mathrm{95}\right)\rightarrow\mathrm{32}\:\mathrm{terms} \\ $$$$\mathrm{probability}\:\mathrm{of}\:\mathrm{n}+\mathrm{1}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3}: \\ $$$$\mathrm{P}_{\mathrm{2}} =\frac{\mathrm{32}}{\mathrm{98}}=\frac{\mathrm{16}}{\mathrm{49}} \\ $$$$\Rightarrow\mathrm{probability}\:\mathrm{that}\:\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\:\mathrm{is}\:\mathrm{divisible} \\ $$$$\mathrm{by}\:\mathrm{3}: \\ $$$$\mathrm{P}_{\mathrm{1}} +\mathrm{P}_{\mathrm{2}} =\frac{\mathrm{32}}{\mathrm{49}}\approx\mathrm{65\%} \\ $$
Commented by OlafThorendsen last updated on 16/Jul/20
Why n = 98 cannot be chosen in  2) ?
$$\mathrm{Why}\:{n}\:=\:\mathrm{98}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{chosen}\:\mathrm{in} \\ $$$$\left.\mathrm{2}\right)\:? \\ $$
Commented by floor(10²Eta[1]) last updated on 16/Jul/20
yeah you′re right i miss that :/
$$\mathrm{yeah}\:\mathrm{you}'\mathrm{re}\:\mathrm{right}\:\mathrm{i}\:\mathrm{miss}\:\mathrm{that}\::/ \\ $$
Answered by bobhans last updated on 16/Jul/20
note that n(n+1) is not divisible by 3  precisely when n ≡ 1 (mod 3) ; that is n  has remainder 1 upon division by 3. from  1 to 98 inclusive there are 33 such values  of n. hence the desired probability equals  to 1−((33)/(98)) = ((65)/(98)) .   [ p(A) = 1−p(A^c ) ] □
$${note}\:{that}\:{n}\left({n}+\mathrm{1}\right)\:{is}\:{not}\:{divisible}\:{by}\:\mathrm{3} \\ $$$${precisely}\:{when}\:{n}\:\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{3}\right)\:;\:{that}\:{is}\:{n} \\ $$$${has}\:{remainder}\:\mathrm{1}\:{upon}\:{division}\:{by}\:\mathrm{3}.\:{from} \\ $$$$\mathrm{1}\:{to}\:\mathrm{98}\:{inclusive}\:{there}\:{are}\:\mathrm{33}\:{such}\:{values} \\ $$$${of}\:{n}.\:{hence}\:{the}\:{desired}\:{probability}\:{equals} \\ $$$${to}\:\mathrm{1}−\frac{\mathrm{33}}{\mathrm{98}}\:=\:\frac{\mathrm{65}}{\mathrm{98}}\:.\: \\ $$$$\left[\:{p}\left({A}\right)\:=\:\mathrm{1}−{p}\left({A}^{{c}} \right)\:\right]\:\square \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *