Menu Close

An-object-moves-in-a-circular-path-with-a-constant-speed-in-the-xy-plane-with-the-centre-at-the-origin-When-the-object-is-at-x-2-m-its-velocity-is-4-m-s-j-Then-objects-velocity-at-y-2-m-i




Question Number 16504 by Tinkutara last updated on 23/Jun/17
An object moves in a circular path with  a constant speed in the xy plane with  the centre at the origin. When the  object is at x = −2 m, its velocity is  −(4 m/s)j^∧ . Then objects velocity at  y = 2 m is  (1) 4 m/s i^∧   (2) (−4 m/s) i^∧   Using this data, find objects acceleration  when it is at y = 2 m  (1) 8 m/s^2  i^∧   (2) −8 m/s^2  j^∧
Anobjectmovesinacircularpathwithaconstantspeedinthexyplanewiththecentreattheorigin.Whentheobjectisatx=2m,itsvelocityis(4m/s)j.Thenobjectsvelocityaty=2mis(1)4m/si(2)(4m/s)iUsingthisdata,findobjectsaccelerationwhenitisaty=2m(1)8m/s2i(2)8m/s2j
Answered by ajfour last updated on 23/Jun/17
Commented by ajfour last updated on 23/Jun/17
 +ve y intercept is (0, 2) instead    of (0,4) as in fig. above .
+veyinterceptis(0,2)insteadof(0,4)asinfig.above.
Commented by Tinkutara last updated on 24/Jun/17
Thanks Sir!
ThanksSir!
Answered by sma3l2996 last updated on 23/Jun/17
v^∧ (θ)=2w(−sinθi^�^∧  +cosθj^∧ )  at x=−2m; θ=π  so : v^∧ (π)=2wj^∧ =−4j^∧   w=−2rad/s  v^∧ (θ)=4(sinθi^∧ −cosθj^∧ )  at y=2m ; θ=(π/2)  v^∧ ((π/2))=(4m/s)i^∧   ∗∗  a^∧ =(dv^∧ /dt)=4w(cosθi^∧ +sinθj^∧ )=−8(cosθi+sinθj)  at y=2m ; θ=(π/2)  so: a^∧ =(−8m/s^2 )j^∧
v(θ)=2w(sinθi^+cosθj)atx=2m;θ=πso:v(π)=2wj=4jw=2rad/sv(θ)=4(sinθicosθj)aty=2m;θ=π2v(π2)=(4m/s)ia=dvdt=4w(cosθi+sinθj)=8(cosθi+sinθj)aty=2m;θ=π2so:a=(8m/s2)j
Commented by Tinkutara last updated on 24/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *