Menu Close

An-object-starts-from-rest-with-constant-acceleration-4-m-s-2-then-find-the-distance-travelled-by-object-in-5-th-half-second-




Question Number 13475 by Tinkutara last updated on 20/May/17
An object starts from rest with constant  acceleration 4 m/s^2 , then find the distance  travelled by object in 5^(th)  half second.
$$\mathrm{An}\:\mathrm{object}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{with}\:\mathrm{constant} \\ $$$$\mathrm{acceleration}\:\mathrm{4}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} ,\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{distance} \\ $$$$\mathrm{travelled}\:\mathrm{by}\:\mathrm{object}\:\mathrm{in}\:\mathrm{5}^{\mathrm{th}} \:\mathrm{half}\:\mathrm{second}. \\ $$
Answered by ajfour last updated on 20/May/17
s=(1/2)at^2     with u=0  5^(th)  half second is from  t=2s → t=(5/2)s  s_2 =(1/2)(4)(4)=8m  s_(5/2) =(1/2)(4)(((25)/4))=12.5m  s_(5/2) −s_2 =(12.5−8)m = 4.5m  .
$${s}=\frac{\mathrm{1}}{\mathrm{2}}{at}^{\mathrm{2}} \:\:\:\:{with}\:\boldsymbol{{u}}=\mathrm{0} \\ $$$$\mathrm{5}^{\boldsymbol{{th}}} \:{half}\:{second}\:{is}\:{from} \\ $$$${t}=\mathrm{2}{s}\:\rightarrow\:{t}=\frac{\mathrm{5}}{\mathrm{2}}{s} \\ $$$${s}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{4}\right)\left(\mathrm{4}\right)=\mathrm{8}{m} \\ $$$${s}_{\mathrm{5}/\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{4}\right)\left(\frac{\mathrm{25}}{\mathrm{4}}\right)=\mathrm{12}.\mathrm{5}{m} \\ $$$${s}_{\mathrm{5}/\mathrm{2}} −{s}_{\mathrm{2}} =\left(\mathrm{12}.\mathrm{5}−\mathrm{8}\right){m}\:=\:\mathrm{4}.\mathrm{5}{m}\:\:. \\ $$
Commented by Tinkutara last updated on 20/May/17
Thanks!
$$\mathrm{Thanks}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *