Menu Close

An-open-box-of-area-486cm-2-If-the-length-is-twice-the-breadth-Find-the-maximum-volume-of-the-box-hence-Show-the-volume-is-maximum-




Question Number 14543 by chux last updated on 02/Jun/17
An open box of area 486cm^2 .If the  length is twice the breadth.Find  the maximum volume of the box.  hence,Show the volume is maximum.
Anopenboxofarea486cm2.Ifthelengthistwicethebreadth.Findthemaximumvolumeofthebox.hence,Showthevolumeismaximum.
Commented by chux last updated on 02/Jun/17
please help
pleasehelp
Answered by sandy_suhendra last updated on 22/Jun/17
let the breadth=x  the length=2x  and the height=h  the area of the box=2x.x+(2x+x+2x+x)h  486 = 2x^2 +6hx  6hx=486−2x^2   h=((486−2x^2 )/(6x))=((243−x^2 )/(3x))  the volume=V=2x.x.h=2x^2 (((243−x^2 )/(3x)))=162x−(2/3)x^3        (dV/dx)=162−2x^2 =0 ⇒ x=9  V max=162×9−(2/3)×9^3  = 972 cm^3
letthebreadth=xthelength=2xandtheheight=htheareaofthebox=2x.x+(2x+x+2x+x)h486=2x2+6hx6hx=4862x2h=4862x26x=243x23xthevolume=V=2x.x.h=2x2(243x23x)=162x23x3dVdx=1622x2=0x=9Vmax=162×923×93=972cm3
Answered by Tinkutara last updated on 02/Jun/17
l = 2b  Let height = h  Since box is open, area will exclude  the topmost surface area. Hence,  2h(l + b) + lb = 486  6bh + 2b^2  = 486  b^2  + 3bh = 243  3bh = 243 − b^2   h = ((243 − b^2 )/(3b))  V = lbh = 2b^2 h = 2b(((243 − b^2 )/3))  = ((486b − 2b^3 )/3)  (dV/db) = (1/3)(486 − 6b^2 ) = 0 gives b = 9  (d^2 V/db^2 ) = (1/3)(−12b) which is always  negative since b > 0.  Volume is maximum at b = 9 cm  V_(max)  = ((486×9 − 2×729)/3)  = 486×3 − 2×243 = 972 cm^3
l=2bLetheight=hSinceboxisopen,areawillexcludethetopmostsurfacearea.Hence,2h(l+b)+lb=4866bh+2b2=486b2+3bh=2433bh=243b2h=243b23bV=lbh=2b2h=2b(243b23)=486b2b33dVdb=13(4866b2)=0givesb=9d2Vdb2=13(12b)whichisalwaysnegativesinceb>0.Volumeismaximumatb=9cmVmax=486×92×7293=486×32×243=972cm3

Leave a Reply

Your email address will not be published. Required fields are marked *