Menu Close

An-open-pipe-of-r-o-10-Cm-3m-has-an-outer-layer-of-ice-that-is-melting-at-the-rate-of-2pi-Cm-3-per-minute-with-thickness-of-20-mm-How-many-days-untill-all-the-ice-melts-and-how-fast-is-the-




Question Number 181053 by Acem last updated on 22/Nov/22
An open pipe of r_o = 10 Cm, ℓ= 3m has an outer   layer of ice that is melting at the rate of 2π Cm^3    per minute with thickness of 20 mm. How many   days untill all the ice melts? and how fast is the   thickness of the ice decreasing per hour?
$${An}\:{open}\:{pipe}\:{of}\:{r}_{{o}} =\:\mathrm{10}\:{Cm},\:\ell=\:\mathrm{3}{m}\:{has}\:{an}\:{outer} \\ $$$$\:{layer}\:{of}\:{ice}\:{that}\:{is}\:{melting}\:{at}\:{the}\:{rate}\:{of}\:\mathrm{2}\pi\:{Cm}^{\mathrm{3}} \\ $$$$\:{per}\:{minute}\:{with}\:{thickness}\:{of}\:\mathrm{20}\:{mm}.\:{How}\:{many} \\ $$$$\:{days}\:{untill}\:{all}\:{the}\:{ice}\:{melts}?\:{and}\:{how}\:{fast}\:{is}\:{the} \\ $$$$\:{thickness}\:{of}\:{the}\:{ice}\:{decreasing}\:{per}\:{hour}? \\ $$
Answered by Acem last updated on 22/Nov/22
 V_(ice) = π ℓ [(r_o +δ)^2 −r_o ^( 2) ]  ; δ: thickness of the ice layer    (∂V/∂t)= 2π ℓ (r_o +δ) (∂δ/∂t)= −2π   (∂δ/∂t)= − 0.16 mm/hr  the rate of the ice is decreasing   Hence 4mm per day   Then it takes 5 days to fully melt
$$\:{V}_{{ice}} =\:\pi\:\ell\:\left[\left({r}_{{o}} +\delta\right)^{\mathrm{2}} −{r}_{{o}} ^{\:\mathrm{2}} \right]\:\:;\:\delta:\:{thickness}\:{of}\:{the}\:{ice}\:{layer} \\ $$$$\:\:\frac{\partial{V}}{\partial{t}}=\:\mathrm{2}\pi\:\ell\:\left({r}_{{o}} +\delta\right)\:\frac{\partial\delta}{\partial{t}}=\:−\mathrm{2}\pi \\ $$$$\:\frac{\partial\delta}{\partial{t}}=\:−\:\mathrm{0}.\mathrm{16}\:{mm}/{hr}\:\:{the}\:{rate}\:{of}\:{the}\:{ice}\:{is}\:{decreasing} \\ $$$$\:{Hence}\:\mathrm{4}{mm}\:{per}\:{day} \\ $$$$\:{Then}\:{it}\:{takes}\:\mathrm{5}\:{days}\:{to}\:{fully}\:{melt} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *