an-open-rectanqular-container-is-to-have-a-volume-of-62-5cm-3-find-the-least-possible-surface-area-of-the-material-required- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 115368 by mathdave last updated on 25/Sep/20 anopenrectanqularcontaineristohaveavolumeof62.5cm3.findtheleastpossiblesurfaceareaofthematerialrequired Answered by 1549442205PVT last updated on 25/Sep/20 Denotethesizesofbottomoftheopenrectanqularcontainerbyx,y;letzistheheighofthecontainer.Fromthehypothesiswehavexyz=62.5(cm3).ThenthesurfaceareatheopenrectanqularcontainerisS=2xz+2yz+xy.ApplyingCauchy′sinequalityforthreepositivenumberswegetS=2xz+2yz+xy⩾332xz.2yz.xy=334(xyz)2=334.62.52=75Theequalityocurrsifandonlyif{xyz=62.52xz=2yz=xy⇔x=y=5,z=52Thus,theleastsurfaceareaofthecontainerequalto75cm2whenx=y=5cm,z=2.5cm Commented by mathdave last updated on 25/Sep/20 gudwork Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-n-x-x-2-dx-Next Next post: y-xsiny-x-ysinx-1-determine-dy-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.