Menu Close

an-open-rectanqular-container-is-to-have-a-volume-of-62-5cm-3-find-the-least-possible-surface-area-of-the-material-required-




Question Number 115368 by mathdave last updated on 25/Sep/20
an open rectanqular container is to  have a volume of 62.5cm^3 .find the least  possible surface area of the material  required
anopenrectanqularcontaineristohaveavolumeof62.5cm3.findtheleastpossiblesurfaceareaofthematerialrequired
Answered by 1549442205PVT last updated on 25/Sep/20
Denote the sizes of bottom of the  open rectanqular container by x,y;  let z is the heigh of the container.  From the hypothesis we have  xyz=62.5(cm^3 ).Then the surface area   the open rectanqular container is  S=2xz+2yz+xy.Applying Cauchy′s  inequality for three positive numbers  we get  S=2xz+2yz+xy≥3^3 (√(2xz.2yz.xy))  =3^3 (√(4(xyz)^2 ))=3^3 (√(4.62.5^2 ))=75  The equality ocurrs if and only if   { ((xyz=62.5)),((2xz=2yz=xy)) :}⇔x=y=5,z=(5/2)  Thus,the least surface area of the  container equal to 75cm^(2 ) when  x=y=5cm,z=2.5cm
Denotethesizesofbottomoftheopenrectanqularcontainerbyx,y;letzistheheighofthecontainer.Fromthehypothesiswehavexyz=62.5(cm3).ThenthesurfaceareatheopenrectanqularcontainerisS=2xz+2yz+xy.ApplyingCauchysinequalityforthreepositivenumberswegetS=2xz+2yz+xy332xz.2yz.xy=334(xyz)2=334.62.52=75Theequalityocurrsifandonlyif{xyz=62.52xz=2yz=xyx=y=5,z=52Thus,theleastsurfaceareaofthecontainerequalto75cm2whenx=y=5cm,z=2.5cm
Commented by mathdave last updated on 25/Sep/20
gud work
gudwork

Leave a Reply

Your email address will not be published. Required fields are marked *