Question Number 55039 by behi83417@gmail.com last updated on 16/Feb/19
$$\alpha\:{and}\:\beta,{are}\:\mathrm{2}\:{roots}\:{of}\:{eq}: \\ $$$$\:\:\:\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:{with}\:{conditions}: \\ $$$$\:\:\:\:\begin{cases}{\alpha^{\mathrm{2}} =\beta+{b}}\\{\beta^{\mathrm{2}} =\alpha+{a}}\end{cases} \\ $$$${find}:\:\:\boldsymbol{{c}}\:{in}\:{terms}\:{of}:\:\boldsymbol{{a}}\:\:{and}\:\:\boldsymbol{{b}}. \\ $$
Commented by mr W last updated on 17/Feb/19
$${i}\:{think}\:{the}\:{question}\:{has}\:{no}\:{solution}, \\ $$$${because}\:{there}\:{are}\:{too}\:{many}\:{conditions}. \\ $$$$ \\ $$$$\alpha\:{and}\:\beta\:{should}\:{be}\:{roots}\:{of}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}, \\ $$$${but}\:{they}\:{are}\:{already}\:{given}\:{by}\:{eqn}.\:{system} \\ $$$$\:\:\:\:\begin{cases}{\alpha^{\mathrm{2}} =\beta+{b}}\\{\beta^{\mathrm{2}} =\alpha+{a}}\end{cases} \\ $$$${this}\:{is}\:{not}\:{possible}\:{with}\:{given}\:{a}\:{and}\:{b}\:{as}\:{shown}\:{below}. \\ $$$$ \\ $$$$\alpha+\beta=−\frac{{b}}{{a}} \\ $$$$\alpha\beta=\frac{{c}}{{a}} \\ $$$${on}\:{one}\:{side}: \\ $$$$\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\alpha+\beta+{a}+{b} \\ $$$$\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta=\alpha+\beta+{a}+{b} \\ $$$$\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{2}{c}}{{a}}=−\frac{{b}}{{a}}+\left({a}+{b}\right) \\ $$$${b}^{\mathrm{2}} −\mathrm{2}{ac}=−{ab}+\left({a}+{b}\right){a}^{\mathrm{2}} \\ $$$$\Rightarrow{c}=\frac{\left({b}−{a}^{\mathrm{2}} \right)\left({a}+{b}\right)}{\mathrm{2}{a}}\:\:\:\:…\left({i}\right) \\ $$$$ \\ $$$${but}\:{on}\:{the}\:{other}\:{side}: \\ $$$$\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} =\beta−\alpha+{a}−{b} \\ $$$$\left(\alpha−\beta\right)\left(\alpha+\beta\right)=\beta−\alpha+{a}−{b} \\ $$$$\left(\alpha−\beta\right)\left(\mathrm{1}+\alpha+\beta\right)={a}−{b} \\ $$$$\left(\alpha−\beta\right)\left(\mathrm{1}−\frac{{b}}{{a}}\right)={a}−{b} \\ $$$$\alpha−\beta={a} \\ $$$$\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} −\mathrm{2}\alpha\beta={a}^{\mathrm{2}} \\ $$$$\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{2}{c}}{{a}}={a}^{\mathrm{2}} \\ $$$$\frac{\mathrm{2}{c}}{{a}}=\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−{a}^{\mathrm{2}} =\frac{\left({b}+{a}^{\mathrm{2}} \right)\left({b}−{a}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} } \\ $$$$\Rightarrow{c}=\frac{\left({b}−{a}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} +{b}\right)}{\mathrm{2}{a}}\:\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)\:{and}\:\left({ii}\right)\:{are}\:{contradiction}. \\ $$
Commented by kaivan.ahmadi last updated on 17/Feb/19
$${hi}\:{mr}\:{w} \\ $$$${please}\:{check}\:{the}\:{proof}\:{again} \\ $$$$\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} =\left(\beta−\alpha\right)+\left({b}−{a}\right)\Rightarrow \\ $$$$\left(\alpha−\beta\right)\left(\mathrm{1}+\left(\alpha+\beta\right)\right)={b}−{a} \\ $$$$ \\ $$
Commented by mr W last updated on 17/Feb/19
$${thank}\:{you}\:{sir}!\:{you}'{re}\:{right}.\:{i}'{ve}\:{fixed}. \\ $$$${please}\:{check}\:{again}. \\ $$
Answered by kaivan.ahmadi last updated on 16/Feb/19
$$ \\ $$$$\begin{cases}{\alpha^{\mathrm{2}} −\beta={b}}\\{\beta^{\mathrm{2}} −\alpha={a}}\end{cases}\Rightarrow\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \right)−\left(\alpha+\beta\right)={a}+{b}\Rightarrow \\ $$$$\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta−\left(\alpha+\beta\right)={a}+{b}\Rightarrow \\ $$$$\left(\frac{−{b}}{{a}}\right)^{\mathrm{2}} −\frac{\mathrm{2}{c}}{{a}}−\left(\frac{−{b}}{{a}}\right)={a}+{b}\Rightarrow \\ $$$$\frac{\mathrm{2}{c}}{{a}}=\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{b}}{{a}}−{a}−{b}\Rightarrow{c}=\frac{{b}^{\mathrm{2}} }{\mathrm{2}{a}}+\frac{{b}}{\mathrm{2}}−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}−\frac{{ab}}{\mathrm{2}}= \\ $$$$\frac{{b}^{\mathrm{2}} +{ab}−{a}^{\mathrm{3}} −{a}^{\mathrm{2}} {b}}{\mathrm{2}{a}} \\ $$