Menu Close

and-are-roots-of-ax-2-bx-c-0-show-that-b-a-and-c-a-hence-form-an-equation-whose-sum-of-roots-and-product-of-roots-are-respectively-1-2-and-2-




Question Number 33139 by Rio Mike last updated on 11/Apr/18
α and β are roots of    ax^2 +bx +c=0  show that α+β= ((−b)/a) and αβ= (c/a)  hence form an equation whose  sum of roots and product of roots  are respectively      −(1/2) and 2.
αandβarerootsofax2+bx+c=0showthatα+β=baandαβ=cahenceformanequationwhosesumofrootsandproductofrootsarerespectively12and2.
Answered by MJS last updated on 11/Apr/18
ax^2 +bx+c=0  x^2 +(b/a)x+(c/a)=0    (x−α)(x−β)=0  x^2 −(α+β)x+αβ=0    ⇒ α+β=−(b/a); αβ=(c/a)    x^2 +(1/2)x+2=0  x=−(1/4)±(√((1/(16))−2))=−(1/4)±((√(31))/4)i  α=−(1/4)−((√(31))/4)i  β=−(1/4)+((√(31))/4)i  α+β=−(1/2)  αβ=(−(1/4)−((√(31))/4)i)(−(1/4)+((√(31))/4)i)=  =(1/(16))−((31)/(16))i^2 =(1/(16))+((31)/(16))=2
ax2+bx+c=0x2+bax+ca=0(xα)(xβ)=0x2(α+β)x+αβ=0α+β=ba;αβ=cax2+12x+2=0x=14±1162=14±314iα=14314iβ=14+314iα+β=12αβ=(14314i)(14+314i)==1163116i2=116+3116=2
Commented by Rio Mike last updated on 11/Apr/18
Generally the new equation is     2x^2 +x +4=0  since   Sum of roots α+β= −(1/2)  αβ=2  New equation = X^2 −(Sumroots)X +product of roots  x^2 −−(1/2)x + 2  2x^2 +x+4=0
Generallythenewequationis2x2+x+4=0sinceSumofrootsα+β=12αβ=2Newequation=X2(Sumroots)X+productofrootsx212x+22x2+x+4=0

Leave a Reply

Your email address will not be published. Required fields are marked *