Menu Close

and-or-more-are-root-of-x-2-x-2-2-x-2-x-k-0-and-lt-0-k-




Question Number 79085 by key of knowledge last updated on 22/Jan/20
α and β (or more)  are root of:  (x^2 +x)^2 −2(x^2 +x)−k=0  and  αβ<0        ⇒k∈?
$$\alpha\:\mathrm{and}\:\beta\:\left(\mathrm{or}\:\mathrm{more}\right)\:\:\mathrm{are}\:\mathrm{root}\:\mathrm{of}: \\ $$$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}\right)−\mathrm{k}=\mathrm{0} \\ $$$$\mathrm{and}\:\:\alpha\beta<\mathrm{0}\:\:\:\:\:\:\:\:\Rightarrow\mathrm{k}\in? \\ $$
Commented by mr W last updated on 22/Jan/20
k∈[−1,0)  right?
$${k}\in\left[−\mathrm{1},\mathrm{0}\right) \\ $$$${right}? \\ $$
Answered by MJS last updated on 23/Jan/20
(x^2 +x)^2 −2(x^2 +x)−k=0  ⇒  x^2 +x=1±(√(k+1))  ⇒  x=−(1/2)±((√(5+4(√(k+1))))/2)∨x=−(1/2)±((√(5−4(√(k+1))))/2)  to get 4 real solutions  −1≤k≤(9/(16))  for k≥−1 there′s always a pair of roots α, β  with αβ<0
$$\left({x}^{\mathrm{2}} +{x}\right)^{\mathrm{2}} −\mathrm{2}\left({x}^{\mathrm{2}} +{x}\right)−{k}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{2}} +{x}=\mathrm{1}\pm\sqrt{{k}+\mathrm{1}} \\ $$$$\Rightarrow \\ $$$${x}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{5}+\mathrm{4}\sqrt{{k}+\mathrm{1}}}}{\mathrm{2}}\vee{x}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{5}−\mathrm{4}\sqrt{{k}+\mathrm{1}}}}{\mathrm{2}} \\ $$$$\mathrm{to}\:\mathrm{get}\:\mathrm{4}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$−\mathrm{1}\leqslant{k}\leqslant\frac{\mathrm{9}}{\mathrm{16}} \\ $$$$\mathrm{for}\:{k}\geqslant−\mathrm{1}\:\mathrm{there}'\mathrm{s}\:\mathrm{always}\:\mathrm{a}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{roots}\:\alpha,\:\beta \\ $$$$\mathrm{with}\:\alpha\beta<\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *