Menu Close

Angle-sin-cos-0-0-1-15-6-2-4-6-2-4-18-5-1-4-5-5-2-2-30-1-2-3-2-36-5-5-2-2-5-1-4-4




Question Number 99321 by Ar Brandon last updated on 20/Jun/20
 [((Angle(𝛉)),(sin(𝛉)),(cos(𝛉)[)),(0^° ,0,1),((15°),(((√6)−(√2))/4),(((√6)+(√2))/4)),((18°),(((√5)−1)/4),((√(5+(√5)))/(2(√2)))),((30°),(1/2),((√3)/2)),((36°),((√(5−(√5)))/(2(√2))),(((√5)+1)/4)),((45°),(1/( (√2))),(1/( (√2)))),((54°),(((√5)+1)/4),((√(5−(√5)))/(2(√2)))),((60°),((√3)/2),(1/2)),((72°),((√(5+(√5)))/(2(√2))),(((√5)−1)/4)),((75°),(((√6)+(√2))/4),(((√6)−(√2))/4)),((90°),1,0) ]  sin(𝛉)=cos(90°−𝛉)
$$\begin{bmatrix}{\boldsymbol{\mathrm{Angle}}\left(\boldsymbol{\theta}\right)}&{\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\theta}\right)}&{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\theta}\right)\left[\right.}\\{\mathrm{0}^{°} }&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{15}°}&{\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}}}&{\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}}}\\{\mathrm{18}°}&{\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}}&{\frac{\sqrt{\mathrm{5}+\sqrt{\mathrm{5}}}}{\mathrm{2}\sqrt{\mathrm{2}}}}\\{\mathrm{30}°}&{\frac{\mathrm{1}}{\mathrm{2}}}&{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\\{\mathrm{36}°}&{\frac{\sqrt{\mathrm{5}−\sqrt{\mathrm{5}}}}{\mathrm{2}\sqrt{\mathrm{2}}}}&{\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}}\\{\mathrm{45}°}&{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}&{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}\\{\mathrm{54}°}&{\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}}&{\frac{\sqrt{\mathrm{5}−\sqrt{\mathrm{5}}}}{\mathrm{2}\sqrt{\mathrm{2}}}}\\{\mathrm{60}°}&{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}&{\frac{\mathrm{1}}{\mathrm{2}}}\\{\mathrm{72}°}&{\frac{\sqrt{\mathrm{5}+\sqrt{\mathrm{5}}}}{\mathrm{2}\sqrt{\mathrm{2}}}}&{\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}}\\{\mathrm{75}°}&{\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}}}&{\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}}}\\{\mathrm{90}°}&{\mathrm{1}}&{\mathrm{0}}\end{bmatrix} \\ $$$$\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\theta}\right)=\boldsymbol{\mathrm{cos}}\left(\mathrm{90}°−\boldsymbol{\theta}\right) \\ $$
Commented by bobhans last updated on 20/Jun/20
waw...cooll
$$\mathrm{waw}…\mathrm{cooll} \\ $$
Commented by mahdi last updated on 20/Jun/20
:)
$$\left.:\right) \\ $$
Answered by MWSuSon last updated on 20/Jun/20
This is really helpful sir.
$$\mathrm{This}\:\mathrm{is}\:\mathrm{really}\:\mathrm{helpful}\:\mathrm{sir}. \\ $$
Commented by bobhans last updated on 20/Jun/20
yes sir
$$\mathrm{yes}\:\mathrm{sir} \\ $$
Commented by Ar Brandon last updated on 20/Jun/20
Thanks��

Leave a Reply

Your email address will not be published. Required fields are marked *