Menu Close

Answer-0-0-




Question Number 61934 by Cypher1207 last updated on 12/Jun/19
Answer: 0^0 =?
$$\mathrm{Answer}:\:\mathrm{0}^{\mathrm{0}} =? \\ $$
Commented by Kunal12588 last updated on 12/Jun/19
I believe 0^0 =1
$$\mathrm{I}\:\mathrm{believe}\:\mathrm{0}^{\mathrm{0}} =\mathrm{1} \\ $$
Commented by MJS last updated on 12/Jun/19
x^x =1  x=1^(1/x)        lim_(x→0^+ ) (1/x)=+∞       lim_(x→0^− ) (1/x)=−∞       lim_(t→±∞) 1^t =1       ⇒  x=1  but x=0 ⇒ 0^0 ≠1    x^x =1  xln x =0  ⇒ x=0 ∨ x=1  but we could also write  0^0 =1  0ln 0 =0  now divide by 0  ln 0 =(0/0)=1 (believing (0/0)=1)  ln 0 =1  e^(ln 0) =e^1   0=e
$${x}^{{x}} =\mathrm{1} \\ $$$${x}=\mathrm{1}^{\frac{\mathrm{1}}{{x}}} \\ $$$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{1}}{{x}}=+\infty \\ $$$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\frac{\mathrm{1}}{{x}}=−\infty \\ $$$$\:\:\:\:\:\underset{{t}\rightarrow\pm\infty} {\mathrm{lim}1}^{{t}} =\mathrm{1} \\ $$$$\:\:\:\:\:\Rightarrow \\ $$$${x}=\mathrm{1} \\ $$$$\mathrm{but}\:{x}=\mathrm{0}\:\Rightarrow\:\mathrm{0}^{\mathrm{0}} \neq\mathrm{1} \\ $$$$ \\ $$$${x}^{{x}} =\mathrm{1} \\ $$$${x}\mathrm{ln}\:{x}\:=\mathrm{0} \\ $$$$\Rightarrow\:{x}=\mathrm{0}\:\vee\:{x}=\mathrm{1} \\ $$$$\mathrm{but}\:\mathrm{we}\:\mathrm{could}\:\mathrm{also}\:\mathrm{write} \\ $$$$\mathrm{0}^{\mathrm{0}} =\mathrm{1} \\ $$$$\mathrm{0ln}\:\mathrm{0}\:=\mathrm{0} \\ $$$$\mathrm{now}\:\mathrm{divide}\:\mathrm{by}\:\mathrm{0} \\ $$$$\mathrm{ln}\:\mathrm{0}\:=\frac{\mathrm{0}}{\mathrm{0}}=\mathrm{1}\:\left(\mathrm{believing}\:\frac{\mathrm{0}}{\mathrm{0}}=\mathrm{1}\right) \\ $$$$\mathrm{ln}\:\mathrm{0}\:=\mathrm{1} \\ $$$$\mathrm{e}^{\mathrm{ln}\:\mathrm{0}} =\mathrm{e}^{\mathrm{1}} \\ $$$$\mathrm{0}=\mathrm{e} \\ $$
Answered by MJS last updated on 12/Jun/19
0^0  is not defined  for x≠0: x^0 =1 ⇒ 0ln x =ln 0 ⇒ 0=0 true       [ln x ∈C for x<0 ⇒ 0ln x =0]  for x>0: 0^x =0 ⇒ 0=(0)^(1/x)  ⇒ 0=0 true       [for x<0 we get ((1/0))^x  which isn′t defined too]  lim_(x→0)  x^0 =1  lim_(x→0^+ )  0^x =0
$$\mathrm{0}^{\mathrm{0}} \:\mathrm{is}\:\mathrm{not}\:\mathrm{defined} \\ $$$$\mathrm{for}\:{x}\neq\mathrm{0}:\:{x}^{\mathrm{0}} =\mathrm{1}\:\Rightarrow\:\mathrm{0ln}\:{x}\:=\mathrm{ln}\:\mathrm{0}\:\Rightarrow\:\mathrm{0}=\mathrm{0}\:\mathrm{true} \\ $$$$\:\:\:\:\:\left[\mathrm{ln}\:{x}\:\in\mathbb{C}\:\mathrm{for}\:{x}<\mathrm{0}\:\Rightarrow\:\mathrm{0ln}\:{x}\:=\mathrm{0}\right] \\ $$$$\mathrm{for}\:{x}>\mathrm{0}:\:\mathrm{0}^{{x}} =\mathrm{0}\:\Rightarrow\:\mathrm{0}=\sqrt[{{x}}]{\mathrm{0}}\:\Rightarrow\:\mathrm{0}=\mathrm{0}\:\mathrm{true} \\ $$$$\:\:\:\:\:\left[\mathrm{for}\:{x}<\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:\left(\frac{\mathrm{1}}{\mathrm{0}}\right)^{{x}} \:\mathrm{which}\:\mathrm{isn}'\mathrm{t}\:\mathrm{defined}\:\mathrm{too}\right] \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}^{\mathrm{0}} =\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\mathrm{0}^{{x}} =\mathrm{0} \\ $$
Commented by MJS last updated on 12/Jun/19
but working on a special function it can be  useful to define it  y=x^0  ⇒ 0^0 :=1  y=0^x  ⇒ 0^0 :=0  y=x^x  ⇒ 0^0 :=1  similar problems occur with (0/0)  y=(0/x) ⇒ (0/0):=0  y=(x/x) ⇒ (0/0):=1
$$\mathrm{but}\:\mathrm{working}\:\mathrm{on}\:\mathrm{a}\:\mathrm{special}\:\mathrm{function}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{useful}\:\mathrm{to}\:\mathrm{define}\:\mathrm{it} \\ $$$${y}={x}^{\mathrm{0}} \:\Rightarrow\:\mathrm{0}^{\mathrm{0}} :=\mathrm{1} \\ $$$${y}=\mathrm{0}^{{x}} \:\Rightarrow\:\mathrm{0}^{\mathrm{0}} :=\mathrm{0} \\ $$$${y}={x}^{{x}} \:\Rightarrow\:\mathrm{0}^{\mathrm{0}} :=\mathrm{1} \\ $$$$\mathrm{similar}\:\mathrm{problems}\:\mathrm{occur}\:\mathrm{with}\:\frac{\mathrm{0}}{\mathrm{0}} \\ $$$${y}=\frac{\mathrm{0}}{{x}}\:\Rightarrow\:\frac{\mathrm{0}}{\mathrm{0}}:=\mathrm{0} \\ $$$${y}=\frac{{x}}{{x}}\:\Rightarrow\:\frac{\mathrm{0}}{\mathrm{0}}:=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *