Menu Close

Answer-0-0-




Question Number 61934 by Cypher1207 last updated on 12/Jun/19
Answer: 0^0 =?
Answer:00=?
Commented by Kunal12588 last updated on 12/Jun/19
I believe 0^0 =1
Ibelieve00=1
Commented by MJS last updated on 12/Jun/19
x^x =1  x=1^(1/x)        lim_(x→0^+ ) (1/x)=+∞       lim_(x→0^− ) (1/x)=−∞       lim_(t→±∞) 1^t =1       ⇒  x=1  but x=0 ⇒ 0^0 ≠1    x^x =1  xln x =0  ⇒ x=0 ∨ x=1  but we could also write  0^0 =1  0ln 0 =0  now divide by 0  ln 0 =(0/0)=1 (believing (0/0)=1)  ln 0 =1  e^(ln 0) =e^1   0=e
xx=1x=11xlimx0+1x=+limx01x=lim1t±t=1x=1butx=0001xx=1xlnx=0x=0x=1butwecouldalsowrite00=10ln0=0nowdivideby0ln0=00=1(believing00=1)ln0=1eln0=e10=e
Answered by MJS last updated on 12/Jun/19
0^0  is not defined  for x≠0: x^0 =1 ⇒ 0ln x =ln 0 ⇒ 0=0 true       [ln x ∈C for x<0 ⇒ 0ln x =0]  for x>0: 0^x =0 ⇒ 0=(0)^(1/x)  ⇒ 0=0 true       [for x<0 we get ((1/0))^x  which isn′t defined too]  lim_(x→0)  x^0 =1  lim_(x→0^+ )  0^x =0
00isnotdefinedforx0:x0=10lnx=ln00=0true[lnxCforx<00lnx=0]forx>0:0x=00=0x0=0true[forx<0weget(10)xwhichisntdefinedtoo]limx0x0=1limx0+0x=0
Commented by MJS last updated on 12/Jun/19
but working on a special function it can be  useful to define it  y=x^0  ⇒ 0^0 :=1  y=0^x  ⇒ 0^0 :=0  y=x^x  ⇒ 0^0 :=1  similar problems occur with (0/0)  y=(0/x) ⇒ (0/0):=0  y=(x/x) ⇒ (0/0):=1
butworkingonaspecialfunctionitcanbeusefultodefineity=x000:=1y=0x00:=0y=xx00:=1similarproblemsoccurwith00y=0x00:=0y=xx00:=1

Leave a Reply

Your email address will not be published. Required fields are marked *