Menu Close

answer-to-25824-we-have-a-x-2-e-x-2-ln-a-so-for-a-gt-1-ln-a-ln-a-1-2-2-gt-gt-gt-gt-R-a-x-2-R-e-x-ln-a-1-2-2-dx-and-with-the-changement-t-x-ln-a-




Question Number 25932 by abdo imad last updated on 16/Dec/17
answer to 25824  we have a^(−x^2 )  = e^(−x^2_  ln(a))   so for a>1  ln(a)=( (ln(a))^(1/2) )^2 >>>>∫_R a^(−^ x^2 )  = ∫_R e^(−(x (ln(a)^(1/2) )^2 ) dx  and with the changement  t=x (ln(a)^(1/2)   >>>>x=t ( ln(a))^(−1/2)    we have  ∫_R a^(−x^2 ) dx  = π^(1/2) (ln(a))^(−1/2) ...if 0<a<1 ln(a)<0   and the integrale is divergente...
$${answer}\:{to}\:\mathrm{25824}\:\:{we}\:{have}\:{a}^{−{x}^{\mathrm{2}} } \:=\:{e}^{−{x}^{\mathrm{2}_{} } {ln}\left({a}\right)} \:\:{so}\:{for}\:{a}>\mathrm{1} \\ $$$${ln}\left({a}\right)=\left(\:\left({ln}\left({a}\right)\right)^{\mathrm{1}/\mathrm{2}} \right)^{\mathrm{2}} >>>>\int_{{R}} {a}^{−^{} {x}^{\mathrm{2}} } \:=\:\int_{{R}} {e}^{−\left({x}\:\left({ln}\left({a}\right)^{\mathrm{1}/\mathrm{2}} \right)^{\mathrm{2}} \right.} {dx} \\ $$$${and}\:{with}\:{the}\:{changement}\:\:{t}={x}\:\left({ln}\left({a}\right)^{\mathrm{1}/\mathrm{2}} \:\:>>>>{x}={t}\:\left(\:{ln}\left({a}\right)\right)^{−\mathrm{1}/\mathrm{2}} \right. \\ $$$$\:{we}\:{have}\:\:\int_{{R}} {a}^{−{x}^{\mathrm{2}} } {dx}\:\:=\:\pi^{\mathrm{1}/\mathrm{2}} \left({ln}\left({a}\right)\right)^{−\mathrm{1}/\mathrm{2}} …{if}\:\mathrm{0}<{a}<\mathrm{1}\:{ln}\left({a}\right)<\mathrm{0} \\ $$$$\:{and}\:{the}\:{integrale}\:{is}\:{divergente}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *