Menu Close

answer-to-25955-we-introduce-the-parametric-function-F-t-0-ln-1-1-x-2-t-1-x-2-1-dx-after-verifying-that-F-is-derivable-on-0-we-find-F-t-0-1-1-x-2-t-1-dx-F-




Question Number 25960 by abdo imad last updated on 16/Dec/17
answer to 25955.we introduce the parametric function  F(t) =∫_0 ^∞   ln(1+(1+x^2_  )t)(1+x^2 )^(−1) dx after verifying that   F is derivable on[0.∝[  we find   ∂F/∂t=  ∫_0 ^∞ ( (1+(1+x^2 )t)^(−1) dx  ∂F/∂t=1/2 ∫_R (tx^2 +t+1)^(−1) dx   we put  f(z) =(tz^2 +z+1)^(−1)   let find the poles of f..tz^2 +z+1=0 <−>  z=+−i((t+1)t^(−1) )^(1/2)   and the poles are  z_0 =i((t+1)t^(−1) )^(1/2)   and   z_1 =−i((t+1)t^(−1) )^(1/2)   and  f(t)  =(t(t−z_0 )(t−z_1 ))^(−1)    by residus theorem    ∫_R f(z)dz =2iπ R(f.z_0 )  =2iπ (t(z_0 −z_1 ))^(−1)   =π t^(−1/2) (t+1)^(−1/2 )     −>∂F/∂t =π 2^(−1)  t^(−1/2) (1+t)^(−1/2)   −>F(t)  =π 2^(−1 ) ∫_0 ^t    x^(−1/2) (1+x)^(−1/2) dx +α  α=F(0)=0 and  F(t) =π2^(−1) ∫_0 ^t  x^(−1/2) (1+x)^(−1/2) dx  and by the changement  x^(1/2) =u   we find    F(t) = π ln( t^(1/2) +(1+t)^(1/2) ) so  ∫_0 ^∞ ln(2+x^2 )(1+x^2 )^(−1) dx=F(1)=πln(1+2^(1/2) )
answerto25955.weintroducetheparametricfunctionF(t)=0ln(1+(1+x2)t)(1+x2)1dxafterverifyingthatFisderivableon[0.[wefindF/t=0((1+(1+x2)t)1dxF/t=1/2R(tx2+t+1)1dxweputf(z)=(tz2+z+1)1letfindthepolesoff..tz2+z+1=0<>z=+i((t+1)t1)1/2andthepolesarez0=i((t+1)t1)1/2andz1=i((t+1)t1)1/2andf(t)=(t(tz0)(tz1))1byresidustheoremRf(z)dz=2iπR(f.z0)=2iπ(t(z0z1))1=πt1/2(t+1)1/2>F/t=π21t1/2(1+t)1/2>F(t)=π210tx1/2(1+x)1/2dx+αα=F(0)=0andF(t)=π210tx1/2(1+x)1/2dxandbythechangementx1/2=uwefindF(t)=πln(t1/2+(1+t)1/2)so0ln(2+x2)(1+x2)1dx=F(1)=πln(1+21/2)

Leave a Reply

Your email address will not be published. Required fields are marked *