answer-to-25955-we-introduce-the-parametric-function-F-t-0-ln-1-1-x-2-t-1-x-2-1-dx-after-verifying-that-F-is-derivable-on-0-we-find-F-t-0-1-1-x-2-t-1-dx-F- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 25960 by abdo imad last updated on 16/Dec/17 answerto25955.weintroducetheparametricfunctionF(t)=∫0∞ln(1+(1+x2)t)(1+x2)−1dxafterverifyingthatFisderivableon[0.∝[wefind∂F/∂t=∫0∞((1+(1+x2)t)−1dx∂F/∂t=1/2∫R(tx2+t+1)−1dxweputf(z)=(tz2+z+1)−1letfindthepolesoff..tz2+z+1=0<−>z=+−i((t+1)t−1)1/2andthepolesarez0=i((t+1)t−1)1/2andz1=−i((t+1)t−1)1/2andf(t)=(t(t−z0)(t−z1))−1byresidustheorem∫Rf(z)dz=2iπR(f.z0)=2iπ(t(z0−z1))−1=πt−1/2(t+1)−1/2−>∂F/∂t=π2−1t−1/2(1+t)−1/2−>F(t)=π2−1∫0tx−1/2(1+x)−1/2dx+αα=F(0)=0andF(t)=π2−1∫0tx−1/2(1+x)−1/2dxandbythechangementx1/2=uwefindF(t)=πln(t1/2+(1+t)1/2)so∫0∞ln(2+x2)(1+x2)−1dx=F(1)=πln(1+21/2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-xcos-ycos-zcos-0-xsin-ysin-zsin-0-and-xsec-ysec-zsec-0-then-prove-that-x-2-y-2-z-2-2-4x-2-y-2-Next Next post: v-pi-0-2-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.